簡易檢索 / 詳目顯示

研究生: 朱國源
Chu, Kuo-Yuan
論文名稱: 弱電離電漿流場對錐體之氣動力分析
An Aerodynamic Analysis on Cone Body in Weakly Ionized Plasma Flow
指導教授: 謝勝己
Hsieh, Sheng-Jii
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 非平衡流質量擴散公式成份紊流模型動力理論弱電離電漿
外文關鍵詞: kinetic theory, species, weakly ionized plasma flow, thermal non-equilibrium, turbulence models, mass diffusivity
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於地球村的發展,對於超音速飛行的需求逐漸迫切,但超音速產生之巨大阻力會嚴重降低經濟效應,所以對於超音速阻力的降低,有許多的研究不斷進行,其中以外加能量電離氣體的方式,已在多國進行廣泛的研究。電離氣體後產生的離子,可以造成空氣阻力的降低,但是因其內部反應的複雜性,及其相關機制仍在探索中。

      本文主要研究是以有限體積法分析,利用CFD-FASTRAN計算流體力學軟體加以計算、求解Navier-Stokes方程式,並配合動力理論、非平衡流、質量擴散模型、來源項計算、及紊流模型等,以氣體中的各成份(species),在電離反應方程式的反應率下,進行對弱電離氣體的流場計算。另外使用同一模型的前提下,討論無電離及有電離氣體物理特性比較,其中包括密度、壓力、溫度、阻力等變化。

      本研究從參考實驗加以對照,並模擬不同參數下,各流場數值的變化,其中參數有:分子內部溫度及電離度。結果發現當電離度及分子內部溫度越高時,整體弱電離氣體對於流場壓力和密度的變化將會加大;亦即,當電離度及分子內部溫度提高時,流場物體的阻力係數將會降低2~4%。

     According to the increasing requirements of global transportation, the applications in supersonic flight are getting more and more important. Due to the increased drag of supersonic flight, the economic benefits of the higher speed would be reduced. There are many studies are introduced. Joining energy in and ionize the gas is one of the methods to solve the problem. After the gas is ionized, the ions could decrease the aerodynamic drag, but the physical mechanism is very complicated.

     This study utilizes CFD-FASTRAN software. The software calculates Navier-Stokes equations, includes kinetic theory, thermal non-equilibrium, mass diffusivity, source term, and turbulence models. The weakly ionized plasma flow field is calculated by the species of the gas, which is based on the assumption of a fixed ionized degree.

     It is found that the molecular internal temperatures and the ionized degrees are changed in this study. The results show that the drag coefficient of the flying body is decreased by 2~4% when the molecular internal temperature and the ionized degree become higher.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 符號說明 xiv 一. 導論 1 1.1緒言 1 1.2 文獻回顧 3 1.2.1 超音速實驗方面 3 1.2.2 次音速實驗方面 6 1.2.3 理論計算方面 6 1.3 研究目的與方法 8 1.4 預期結果 8 二. 物理問題 10 2.1物理現象與問題假設 10 2.1.1 物理現象 10 2.1.2 問題假設 12 2.2 統御方程式 13 2.2.1 質量守恆 13 2.2.2 動量守恆 13 2.2.3 能量守恆 14 2.3 流場物理模式 14 2.3.1 熱力學模式 15 2.3.2 傅立葉熱傳導定理 16 2.3.3 質量擴散模型 17 2.3.4 來源項 18 2.3.5 電離方程式 19 2.3.6 紊流模型 20 2.3.7 阻力係數計算 21 三. 數值方法 23 3.1 CFDRC軟體系統介紹 23 3.2 幾何外型與流場假設 23 3.3 有限體積法 24 3.4 計算算則 27 3.5邊界條件與初始條件 29 3.5.1 入口邊界條件 29 3.5.2 出口邊界條件 29 3.5.3 壁面邊界條件 29 3.5.4 初始條件 30 3.6 數值模擬與驗證 30 3.6.1 程式驗證 30 3.6.2二維楔型體格點獨立性分析 31 3.6.3三維錐體格點獨立性分析 31 四. 結果與討論 33 4.1二維楔型體流場計算 33 4.1.1各項參數變化比較 33 4.1.2計算域與收斂說明 36 4.1.3計算結果與討論 36 4.2三維錐體流場計算 39 4.2.1 計算域與收斂說明 39 4.2.2 計算結果與討論 40 五. 結論 42 5.1 結論 42 5.2 未來工作 43 參考文獻 45 表 48 圖 57 自述 95

    [1] R. Yano, V. Contini, P. Palm, S. Meriman, S. Aithal, I. Adamovich, W. Lempert, V. Subramaniam, and J. W. Rich, “Experimental Characterization of Shock Dispersions in Weakly Ionized Nonequilibrium Plasmas”, AIAA-99-3671, 30th Plasmadynamics and Lasers Conference, Norfolk, VA, June 1999

    [2] Samuel Merriman, Igor Adamovich, and J. William Rich, “Studies of Oblique Shock Waves in Weakly Ionized Nonequilibrium Plasmas”, AIAA 99-4823, AIAA 9th International Space Planes and Hypersonic Systems and Technologies Conference and 3rd Weakly Ionized Gases Workshop, Norfolk, VA, November 1999

    [3] T. K. Bose, “A CFD Study of Hypersonic Weakly-Ionized Argon Plasma Flow”, AIAA 2001-3021, 35th AIAA Thermophysics Conference, Anaheim, CA, June 2001

    [4] Richard B. Miles, “Flow Control by Energy Addition into High-Speed Air”, AIAA 2000-2324, Fluids 2000, June 2000

    [5] 顏坤志, 趙伊君, 中國大百科全書智慧藏 詞條”高溫氣體物理力學”, 2001

    [6] Yu. Ch. Ganiev, V. P. Gordeev, A. V. Krasilnikov, V. I. Lagutin, V. N. Otmennikov, and A. V. Panasenko, “Theoretical and Experimental Study of the Possibility of Reducing Aerodynamic Drag by Employing Plasma Injection” AIAA 99-0603, 37th AIAA Aerospace Sciences Meeting & Exhibit, January 1999

    [7] A. Klimov, S. Leonov, A. Pashina, V. Skvortsov, T. Cain and B. Timofeev, “Influence of A Corona Discharge on The Supersonic Drag of An Axisymmetric Body”, AIAA 99-4856, 3rd Weakly Ionized Gas Workshop, Norfolk, Nov. 1999.

    [8] Yu. V. Shcherbakov, N. S. Ivanov, N. D. Baryshev, V. S. Frolovskij, V. S. Syssoev, “Drag Reduction by AC Streamer Corona Discharges along a Wing-like Profile Plate”, AIAA 2000-2670, 31st AIAA Plasmadynamics and Laser Conference, Denver, CO, June 2000

    [9] Thomas C. Corke, Eric J. Jumper, Martiqua L. Post and Dmitriy Orlov, “Application of Weakly-Ionized Plasmas as Wing Flow-Control Devices”, AIAA 2002-0350, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, January, 2002

    [10] Eswar Josyula, William F. Bailey, “Governing Equations for Weakly Ionized Plasma Flowfields of Aerospace Vehicles”, AIAA 2002-2228, 33rd Plasmadynamics and Lasers Conference, May 2002

    [11] N. D. Akey and M. E. Cross, ”Radio blackout alleviation and plasma diagnostic results from a 25,000 foot per second blund body reentry”, Technical Report D-5615, NASA-TN, Feb. 1970.

    [12] W. L. Grantham, “Flight results of 25,000 foot per second rerentry experiment using microwave reflectometers to measure plasma electron density and standoff distance”, Technical Report D-6062, NASA-TN, Dec. 1970.

    [13] W. L. Jones and M. E. Cross, ”Electrostatic probe measurements of plasma parameters for two reentry flight experiments at 25,000 feet per second”, Technical Report D-6617, NASA-TN, Feb. 1972.

    [14] V. Soloviev, V. Krivtsov and A. Konchakov, “Simulation of Supersonic Body Drag Reduction Producted by Forebody Filamentary Plasmas”, AIAA 2001-2727, 32nd AIAA Plasmadyndamics and Lasers Conference, Anaheim, CA, June 2001

    [15] Irina A. Sokolova, “Transport Properties of weakly Ionized Air”, AIAA 2001-3083, 32nd AIAA Plasmadynamics and Lasers Conference and 4th Weakly Ionized Gases Workshop, Anaheim, CA, June 2001

    [16] CFD-FASTRAN Theory Manual, pp.2-1~3-15, CFD Research Corporation, Jan. 2004.

    [17] Walter G. Vincenti, and Charles H. Kruger, Jr. , Introduction to Physical Gas Dynamics, Krieger Publishing Company, 2nd edition, 1965.

    [18] Paola Cinnella, “Viscous performance of transonic dense gas flows”, AIAA 2005-5284, 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario, June, 2005

    [19] CFD-FASTRAN V2003 User Manual, pp.215, CFD Research Corporation, Jan. 2004.

    [20] CFD-ACE+基礎訓練課程, 財團法人國家實驗研究院 國家高速網路與計算中心 南部事業群。

    [21] 李士奇, “二維超音速理想磁流在塊狀物體上之數值模擬”, 成功大學航太所碩士論文, Jun. 1996.

    [22] CFD-FASTRAN V2003 Tutorial 07, CFD Research Corporation, Jan. 2004.

    [23] AME Research Staff, Equations, Tables, and Charts for Compressible Flow, National Advisory Committee for Aeronautics Report 1135, 1953

    [24] Millikan R.C., White D.R., "Systematics of Vibrational Relaxation", Journal of Chemical Physics, Vol. 39, No. 12, 3209-3213, December 1963.

    [25] John G. Landry, John H. Heinbockel, Willard E. Meador, “Nozzle Flow with Vibrational Nonequilibrium”, Old Dominion University, Norfolk, Virginia.

    下載圖示 校內:2006-08-30公開
    校外:2006-08-30公開
    QR CODE