| 研究生: |
杜政杰 Tu, Cheng-Chieh |
|---|---|
| 論文名稱: |
含銅與鎳之層狀矽酸鹽衍生之觸媒於選擇性氫化己二酸為己二醇之研究 Phyllosilicates-derived CuNi/SiO2 catalysts in the selective hydrogenation of adipic acid to 1,6-hexanediol |
| 指導教授: |
林裕川
Lin, Yu-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 層狀矽酸鹽 、己二酸 、銅 、鎳 、氫化反應 |
| 外文關鍵詞: | adipic acid, copper, hydrogenation, nickel, phyllosilicate |
| 相關次數: | 點閱:111 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以鎳作為促進劑之含有銅、鎳層狀矽酸鹽衍生之觸媒對於己二酸氫化為己二醇之影響。我們合成不同重量百分比之銅與鎳,並比較其物化性差異對反應性之影響。觸媒之物化性鑑定包括: 氮氣物理吸脫附、X光繞射圖譜(XRD)、高解析穿透式電子顯微鏡(HR-TEM)、一氧化碳吸附之紅外光譜分析(CO-IR)、氫氣程溫還原(H2-TPR)、氫氣程溫脫附(H2-TPD)、乙酸程溫表面反應(acetic-acid TPSR)、X光光電子能譜(XPS)以及歐傑電子能譜分析(Auger)等等。
本實驗以氨氣蒸發水熱合成法來製備不同重量百分比之銅、鎳層狀矽酸鹽觸媒,經過還原前處理後,形成分散良好之Cu0以及Cu+且與層狀矽酸鹽結構中的Ni2+緊密接觸且具牽引力,適當的鎳添加量能產生較高之Cu+/(Cu0 + Cu+)比例以促進反應性,其中以Cu36Ni5PS-red觸媒具有最高之Cu+/(Cu0 + Cu+)比例以及本質活性於己二酸轉化為己二醇。除此之外此觸媒亦具有最高之本質活性於四至六碳之單酸以及雙酸之氫化反應,因此我們搭配改變氫氣分壓之動力學分析,進一步提出己二酸氫化之反應機制。
NiOx-promoted Cu-based catalysts derived from CuNi phyllosilicates were synthesized, characterized, and tested in the selective hydrogenation of adipic acid to 1,6-hexandiol. The reduction of CuNi phyllosilicate allows finely dispersed Cu0 and Cu+ to be coexisted with NiOx. The composition of Cu and Ni of phyllosilicate was discovered to be related to the surface Cu+/(Cu0 + Cu+) ratio after reduction. The Cu36Ni5PS-red catalyst had the highest Cu+/(Cu0 + Cu+) ratio and the highest turnover frequency for the selective hydrogenation of adipic acid. This catalyst is also effective at hydrogenation of succinic acid, glutaric acid, butyric acid, pentanoic acid, and hexanoic acid to their respective alcohols. Accordingly, a plausible mechanism of adipic acid conversion to its primary hydrogenated product, i.e. 6-hydroxycaproic acid, was proposed.
1. Corma Canos, A., Iborra, S. &Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).
2. Pritchard, J., Filonenko, G. A., VanPutten, R., Hensen Ab, E. J. M. &Pidko, E. A. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem. Soc. Rev. Chem. Soc. Rev 44, 3808–3833 (2015).
3. Lux Research. Bio-based Materials and Chemicals Intelligence Service (2013).
4. Castellan, A., Bart, J. C. J. &Cavallaro, S. Industrial production and use of adipic acid. Catal. Today 9, 237–254 (1991).
5. Sun, D. et al. Production of C4 and C5 alcohols from biomass-derived materials. Green Chem. 18, 2579–2597 (2016).
6. Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R. &Springer, A. Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chem. Eng. Technol. 31, 647–654 (2008).
7. Deshpande, R. M., Buwa, V.V., Rode, C.V., Chaudhari, R.V. &Mills, P. L. Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid. Catal. Commun. 3, 269–274 (2002).
8. Luque, R., Clark, J. H., Yoshida, K. &Gai, P. L. Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chem. Commun. 5305 (2009). doi:10.1039/b911877b
9. Chung, S. H., Park, Y. M., Kim, M. S. &Lee, K. Y. The effect of textural properties on the hydrogenation of succinic acid using palladium incorporated mesoporous supports. Catal. Today 185, 205–210 (2012).
10. Liu, X. et al. Tuning the catalytic selectivity in biomass-derived succinic acid hydrogenation on FeO x -modified Pd catalysts. J. Mater. Chem. A 3, 23560–23569 (2015).
11. Minh, D. P., Besson, M., Pinel, C., Fuertes, P. &Petitjean, C. Aqueous-Phase Hydrogenation of Biomass-Based Succinic Acid to 1,4-Butanediol Over Supported Bimetallic Catalysts. Top. Catal. 53, 1270–1273 (2010).
12. Chen, L., Zhu, Y., Zheng, H., Zhang, C. &Li, Y. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO 2 and Ru-Mo/ZrO2 catalysts. Appl. Catal. A Gen. 411–412, 95–104 (2012).
13. Ly, B. K. et al. Effect of addition mode of Re in bimetallic Pd-Re/TiO2catalysts upon the selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Top. Catal. 55, 466–473 (2012).
14. Kang, K. H. et al. Hydrogenation of succinic acid to 1,4-butanediol over Re-Ru bimetallic catalysts supported on mesoporous carbon. Appl. Catal. A Gen. 490, 153–162 (2015).
15. Morawietz, P. W. and M. Alcohols , Polyhydric. Ullmann’s Encycl. Ind. Chem. 2, 1–16 (2002).
16. Mitsuo Konishi &Ueno, E. Catalysts for hydrogenation of carboxylic acid. U.S. Patent No. 6495730. (2002).
17. Toba, M. et al. Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Appl. Catal. A Gen. 189, 243–250 (1999).
18. Takeda, Y., Tamura, M., Nakagawa, Y., Okumura, K. &Tomishige, K. Hydrogenation of dicarboxylic acids to diols over Re–Pd catalysts. Catal. Sci. Technol. 6, 5668–5683 (2016).
19. Vardon, D. R. et al. Adipic acid production from lignin. Energy Environ. Sci. 8, 617–628 (2015).
20. Cyberlipid. Dicarboxylic acids. 20, 1–16 (2008).
21. Van deVyver, S. &Román-Leshkov, Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 3, 1465–1479 (2013).
22. Bart, J. C. J. &Cavallaro, S. Transiting from adipic acid to bioadipic acid. Part II. Biosynthetic pathways. Ind. Eng. Chem. Res. 54, 567–576 (2015).
23. 王紅珍. 己二酸:供求逆轉,企業如何突圍. 中國化工報 (2015).
24. 陳育誠. 我國發展己二酸產品之機會分析. IEK產業情報網 (2014).
25. He, J. et al. New catalytic strategies for α,ω-diols production from lignocellulosic biomass. Faraday Discuss. 202, 247–267 (2017).
26. Van DeVyver, S. &Román-Leshkov, Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 3, 1465–1479 (2013).
27. Duarte, H. A., Lourenço1, M. P. &Guimarães, T. H. and L. Clay Mineral Nanotubes: Stability, Structure and Properties. Stoichiom. Mater. Sci. ISBN 978-953-51-0512-1 (2012).
28. Kim, J. S. et al. Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. Adv. Mater. 29, 6893–6900 (2017).
29. Qiu, C., Jiang, J. &Ai, L. When Layered Nickel-Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces 8, 945–951 (2016).
30. Rong, Q., Long, L. L., Zhang, X., Huang, Y. X. &Yu, H. Q. Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Appl. Energy 153, 63–69 (2015).
31. Zhao, J. H. et al. Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for High-Performance Supercapacitors. Adv. Mater. Interfaces 2, 377–387 (2015).
32. Yang, Y. et al. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 4, 882–890 (2011).
33. Wang, X., Zhuang, J., Chen, J., Zhou, K. &Li, Y. Thermally stable silicate nanotubes. Angew. Chemie - Int. Ed. 43, 2017–2020 (2004).
34. Y., Z. et al. Poly(methacrylic acid)-graft-Ni3Si2O5(OH)4 multiwalled nanotubes as a novel nanosorbent for effective removal of copper(II) ions. Colloids Surfaces A Physicochem. Eng. Asp. 502, 89–101 (2016).
35. Qu, S., Pei, S., Zhang, S. &Song, P. Preparation of silicate nanotubes and its application for electrochemical sensing of clozapine. Mater. Lett. 102–103, 56–58 (2013).
36. Li, T., Zhao, C., Ma, D., Du, F. &Wang, J. Electrodeposition of Prussian blue films on Ni3Si2O5(OH)4 hollow nanospheres and their enhanced electrochromic properties. RSC Adv. 6, 39833–39838 (2016).
37. Sivaiah, M.V. et al. Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous Mesoporous Mater. 140, 69–80 (2011).
38. Sivaiah, M.V., Petit, S., Barrault, J., Batiot-Dupeyrat, C. &Valange, S. CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors. Catal. Today 157, 397–403 (2010).
39. Yang, M. et al. Ammonia-assisted synthesis towards a phyllosilicate-derived highly-dispersed and long-lived Ni/SiO2 catalyst. Catal. Sci. Technol. 5, 5095–5099 (2015).
40. Ashok, J., Ang, M. L., Terence, P. Z. L. &Kawi, S. Promotion of the Water-Gas-Shift Reaction by Nickel Hydroxyl Species in Partially Reduced Nickel-Containing Phyllosilicate Catalysts. ChemCatChem 8, 1308–1318 (2016).
41. Bian, Z., Li, Z., Ashok, J. &Kawi, S. A highly active and stable Ni-Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction. Chem. Commun. 51, 16324–16326 (2015).
42. Zhang, C. et al. Hydrogen production via steam reforming of ethanol on phyllosilicate- derived Ni/SiO2: Enhanced metal-support interaction and catalytic stability. ACS Sustain. Chem. Eng. 1, 161–173 (2013).
43. Park, J. C. et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Res. 10, 1044–1055 (2017).
44. Wang, Z. Q. et al. High-Performance and Long-Lived Cu/SiO2 Nanocatalyst for CO2 Hydrogenation. ACS Catal. 5, 4255–4259 (2015).
45. Sheng, Y. &Zeng, H. C. Structured assemblages of single-walled 3d transition metal silicate nanotubes as precursors for composition-tailorable catalysts. Chem. Mater. 27, 658–667 (2015).
46. Chen, L. F. et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 257, 172–180 (2008).
47. He, Z., Lin, H., He, P. &Yuan, Y. Effect of boric oxide doping on the stability and activity of a Cu-SiO2catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol. J. Catal. 277, 54–63 (2011).
48. Zhao, Y. et al. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Appl. Catal. A Gen. 539, 59–69 (2017).
49. Yue, H. et al. A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nat. Commun. 4, 1–7 (2013).
50. Gong, X. et al. Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters. Chem. Commun. 53, 6933–6936 (2017).
51. Di, W. et al. Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Appl. Catal. A Gen. 510, 244–259 (2016).
52. Ashok, J., Kathiraser, Y., Ang, M. L. &Kawi, S. Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction. Catal. Sci. Technol. 5, 4398–4409 (2015).
53. Jiang, J.-W., Tu, C.-C., Chen, C.-H. &Lin, Y.-C. Highly selective silica-supported copper catalysts derived from copper phyllosilicates in the hydrogenation of adipic acid to 1,6-hexanediol. ChemCatChem 10, 5449–5458 (2018).
54. Osinga, T. J., Linsen, B. G. &vanBeek, W. P. The determination of the specific copper surface area in catalysts. J. Catal. 7, 277–279 (1967).
55. Gong, J. et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 134, 13922–13925 (2012).
56. GriftP.A.ElberseA.MulderJ.W.Geus, C. J. G. V.Der. Preparation of Silica-Supported Copper Catalysts by means of Deposition-Precipitation. Appl. Catal. 59, 275–289 (1990).
57. Van DenBerg, R. et al. Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy. J. Am. Chem. Soc. 138, 3433–3442 (2016).
58. Neimark, A.V. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1–19 (2015).
59. Pina, G., Louis, C. &Keane, M. A. Nickel particle size effects in catalytic hydrogenation and hydrodechlorination: Phenolic transformations over nickel/silica. Phys. Chem. Chem. Phys. 5, 1924–1931 (2003).
60. Konvalinka, J. A. &Scholten, J. J. F. Reaction of Nitrous Oxide with Copper Surfaces. Trans Faraday Soc 65, 2465 (1969).
61. Genger, T., Hinrichsen, O. &Muhler, M. The temperature-programmed desorption of hydrogen from copper surfaces. Catal. Letters 59, 137–141 (1999).
62. Boudjahem, A. G., Pietrowski, M., Monteverdi, S., Mercy, M. &Bettahar, M. M. Structural and surface propperties of Ni-Cu nanoparticles supported on SiO2. J. Mater. Sci. 41, 2025–2030 (2006).
63. Zhao, Y. et al. Ni-containing Cu/SiO2catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate. Catal. Today 276, 28–35 (2016).
64. Taylor, P., Frost, D. C., Mcdowell, C. A. &Woolsey, I. S. X-ray photoelectron spectra of copper compounds. Mol. Phys. 24, 861–877 (1972).
65. Mosser, C., Mosser, A., Romeo, M., Petit, S. &Decarreau, A. Natural and synthetic copper phyllosilicates studied by XPS. Clays Clay Miner. 40, 593–599 (1992).
66. Yan, L., Liu, X., Deng, J. &Fu, Y. Molybdenum modified nickel phyllosilicates as a high performance bifunctional catalyst for deoxygenation of methyl palmitate to alkanes under mild conditions. Green Chem. 19, 4600–4609 (2017).
67. Li, Z., Mo, L., Kathiraser, Y. &Kawi, S. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction. ACS Catal. 4, 1526–1536 (2014).
68. Norton, P. R., Tapping, R. L. &Goodale, J. W. A photoemission study of the interaction of Ni(100), (110) and (111) surfaces with oxygen. Surf. Sci. 65, 13–36 (1977).
69. Zheng, X., Lin, H., Zheng, J., Duan, X. &Yuan, Y. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol. ACS Catal. 3, 2738–2749 (2013).
70. Mihaylov, M. &Hadjiivanov, K. FTIR study of CO and NO adsorption and coadsorption on Ni-ZSM-5 and Ni/SiO2. Langmuir 18, 4376–4383 (2002).
71. Di, W. et al. Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Appl. Catal. A Gen. 510, 244–259 (2016).
72. Fisher, I. A. &Bell, A. T. In Situ Infrared Study of Methanol Synthesis from H 2 / CO over Cu / SiO 2 and Cu / ZrO 2 / SiO 2. J. Catal. 178, 153–173 (1998).
73. Schumann, J., Kröhnert, J., Frei, E., Schlögl, R. &Trunschke, A. IR-Spectroscopic Study on the Interface of Cu-Based Methanol Synthesis Catalysts: Evidence for the Formation of a ZnO Overlayer. Top. Catal. 60, 1735–1743 (2017).
74. Mojet, B. L., Ebbesen, S. D. &Lefferts, L. Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 39, 4643 (2010).
75. Wu, J., Gao, G., Sun, P., Long, X. &Li, F. Synergetic Catalysis of Bimetallic CuCo Nanocomposites for Selective Hydrogenation of Bioderived Esters. ACS Catal. 7, 7890–7901 (2017).
76. Zhang, Z. et al. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chem. 20, 197–206 (2018).
77. Pestman, R., Koster, R. M., VanDuijne, A., Pieterse, J. A. Z. &Ponec, V. Reactions of carboxylic acids on oxides: 2. Bimolecular reaction of aliphatic acids to ketones. J. Catal. 168, 265–272 (1997).
78. Schüth, F., Ward, M. D. &Buriak, J. M. Common Pitfalls of Catalysis Manuscripts Submitted to Chemistry of Materials. Chem. Mater. 30, 3599–3600 (2018).
79. Koso, S., Nakagawa, Y. &Tomishige, K. Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. J. Catal. 280, 221–229 (2011).
80. Chen, K., Mori, K., Watanabe, H., Nakagawa, Y. &Tomishige, K. C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J. Catal. 294, 171–183 (2012).
81. Xu, C. et al. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 9, 3367 (2018).
校內:2020-08-01公開