簡易檢索 / 詳目顯示

研究生: 陳啟宗
Chen, Chi-Tzung
論文名稱: 機械性質與加工條件對硬脆材料劃切加工之影響
The effect of mechanical properties and cutting parameters on the scribing of brittle materials
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 71
中文關鍵詞: 裂片劃切力劃切延脆轉換硬脆材料
外文關鍵詞: scribing force, brittle-ductile transition, Scribing, breaking, Brittle materials
相關次數: 點閱:128下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文提出一套以劃切及裂片製程得到材料機械性質的方法,並分析製程應用於硬脆材料之加工特性。文中以不同劃切深度及刀刃後傾角進行實驗,觀察劃切痕跡之表面狀態。由劃切力量探討不同材料(包含:矽晶、光學玻璃、Cu2600及Al6061)的比切削能,再由裂片力量求出材料之機械性質如:楊氏係數、彎曲強度及破壞韌性。
      另由實驗結果顯示切削深度由淺到深變化,加工材料將經歷延性、延脆轉換與脆性破壞三種移除機制。比切削能隨著切削深度由淺到深呈現下降之趨勢。最後分析結果得知對矽晶而言,切深大於1mm為脆性破壞,切深小於0.4mm為延性破壞;對STV-Glass而言切深大於2mm為脆性破壞,切深小於0.6mm為延性破壞。

      This paper proposes a method which obtains mechanical properties of materials by scribing and breaking processes. This paper also analyzes the machining characteristics of brittle materials by these processes, and observed the scribing surface morphology by experimenting on different cutting traces and rake angles. The specific cutting energy of different materials such as silicon, optical glass, Cu2600 and Al6061 is discussed. Moreover, mechanical properties such as Young’s modulus, bending force and fracture toughness are calculated from breaking force.
      The result of experiments shows that the cutting conditions will experience ductile, brittle–ductile transition and then brittle destruction when the cutting depth changes from shallow to deep. The deeper the cutting depth is, the less the specific cutting energy is. Finally, the process will be brittle or ductile process when the depth for silicon is more than 1mm or less than 0.4mm and it will be brittle or ductile process when the depth for STV-Glass is more than 2mm or less than 0.6mm.

    總目錄  中文摘要 I 英文摘要 II 誌 謝 III 總目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章 序論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1切削力模式 2 1.2.2矽晶圓劃切 2 1.2.3光學玻璃之劃切 4 1.3 研究範疇及論文架構 5 第二章 硬脆材料劃切及裂片模式之相關理論 6 2.1 切削力之介紹  6 2.2晶圓劃切之介紹 9 2.3 光學玻璃裂片之介紹 9 2.4彎曲強度之介紹與求法 10 2.5 楊氏模數之介紹與求法 11 2.6 破壞韌性之介紹 14 2.7 臨界切削深度  16 第三章 硬脆材料切削實驗 17 3.1 儀器設備介紹  17 3.2 實驗參數規劃  21 3.3 實驗方法與流程 23 3.3.1矽晶圓與STV Glass劃切實驗方法 23 3.3.2三點測試裂片方法 24 3.4 實驗數據 25 3.4.1劃切力量與深度關係 25 3.4.2比切削能與垂直方向切削係數之介紹 28 3.4.3矽晶與STV-Glass在不同後傾角其切削能與切削係數之比 較與討論 28 3.4.4固定刀具後傾角角度,比較矽晶、STV-Glass、Al6061及Cu2600之比切削能與垂直方向切削力常數關係 33 3.4.5矽晶圓劃切顯微結構觀察 35 3.4.6 STV Glass劃切顯微結構觀察 38 3.4.7顯微結構觀察與討論 40 第四章 利用劃切及裂片製程求得硬脆材料之機械性質 41 4.1 前言 41 4.2 利用裂片製程求得矽晶之機械性質 42 4.2.1 矽晶圓的方向性 42 4.2.2 利用硬度測試求取矽晶圓的破壞韌性 44 4.2.3 利用三點測試求矽晶圓的楊氏系數 48 4.2.4利用三點測試裂片求矽晶圓的彎曲強度及破壞韌性 48 4.3利用裂片製程求得STV Glass之機械性質 51 4.3.1 玻璃的簡介51 4.3.2 利用硬度測試求取STV Glass的破壞韌性 51 4.3.3 利用三點測試求取STV Glass的楊氏係數 55 4.3.4 利用三點測試裂片求STV Glass的彎曲強度並求取破壞韌性 55 4.3.5 金屬Cu2600與Al6061材料成分與硬度值 55 4.4 加工後試片的觀察 57 4.4.1 延性加工區 58 4.4.2 延性轉脆性破壞區 60 4.4.3 脆性破壞區 61 4.5 脆韌轉換點之介紹 62 4.6硬度、破壞韌性、楊氏係數等性質對加工特性的影響 64 第五章 結論與建議 66 5.1 結論 66 5.2 建議與改良方法 68 參考文獻 69 自 述  71

    1.W. J. Eneres, R.E. DeVor, and S. G. Kapoor, “A Dual -Mechanism Approach to the
    Prediction of Machining Forces,” ASME Journal of Engineering for Industry,
    Vol. 117, pp. 526-541, 1995.
    2.I. Yellowley, “Observations on the Mean Values of Forces, Torque and Specific
    Power in the Peripheral Milling Process,” International Journal of Machine
    Tool Design and Research, Vol. 25(4), pp. 337-346, 1985.
    3.A. J. P. Sabberwal, “Chip Section and Cutting Force During the Milling
    Operation, ” Annals of the CIRP, Vol. 10, pp. 197-203, 1961.
    4.E. Budak, Y. Altintas, E. J. A. Armarego, “Prediction of Milling Force
    Coefficients from Orthogonal Cutting Data,” Transactions of ASME, 118, pp.
    216-224, 1996.
    5.Th. Schaller, L. Bohn, J. Mayer, K. Schubert, “Microstructure groove with a
    width of less than 50mm cut with ground hard metal micro end mills,” Precision
    Engineering, 23, pp.229-235, 1999.
    6.H. Jared Bradley, A. Dow Thomas, “Investigation of the direction of chip
    motion in diamond turning,” Precision Engineering, 25, pp.155-164, 2001.
    7.Jeong-Du Kim, Dong-Sik Kim, “Surface characteristics of magnetic-disk cutting
    using a sing-crystal diamond tool in an ultraprecision lathe,” Journal of
    Materials Processing Technology, 59, pp.303-308, 1996.
    8.Nobuyuki Moronuki, Yuan Liang, Yuji Furukawa, “Experiments on the effect of
    material properties on microcutting processes” Butterworth-Heinemann, 16,
    pp.124-131, 1994.
    9.D. A. Lucca, P. Chou, R. J. Hocken, “Effect of Tool Edge Geometry on the
    Nanometric Cutting of Ge,” Annals of the CIRP, 47, pp.475-478, 1998.
    10.R. A. Allaire and J. C.Lapp, “Scoring of AMLCD Glass,” Corning Incorporated,
    Technical Information Paper, 2001.
    11.F.Z. Fang, L. J. Chen, “Ultra-Precision Cutting for ZKN7 Glass,” Annals of
    the CIRP, 49, pp.17-20, 2000.
    12.Corning Incorporated, “Fracture Analysis, a Basic Tool to Solve Breakage
    Issues,” Technical Information Paper, 2001.
    13.Ming Zhou, B.K. A. Ngoi, Z. W.Zhong and C.S. Chin, “Brittle-Ductile
    Transition In Diamond Cutting of Silicon Single Crystals,” Materials and
    Manufacturing Processes, 16(4), pp.447-460, 2001.
    14.W. J. Eneres, R.E. DeVor and S. G. Kapoor, “A Dual-Mechanism Approach to the
    Prediction of Machining Forces,” ASME Journal of Engineering for Industry,
    Vol.117, pp. 526-541, 1995.
    15.John Mauro, “Hardness and Toughness,” CES 305: Laboratory
    Experiment # 7, NYS College of Ceramics, 1999.
    16. V. Weiss, “Application of Fracture Mechanical to Design,” Sagamore Army
    Materials Research Conference Proceedings, pp.1-22, 1975.
    17.http://www.ozoneglass.co.uk/guidance/mechanical
    18.http://www.corning.com/lightingmaterials/images/
    19.http://www.memsnet.org/material/
    20.T. G. Bifano, T.A. Dow, and R. D. Scattergood, “Ductile-Regime Grinding, Anew
    Technology for Machining Brittle Materials,” ASME Journal of Engineering for
    Industry, Vol.113, pp.184-189, 1991.

    下載圖示 校內:立即公開
    校外:2004-08-02公開
    QR CODE