簡易檢索 / 詳目顯示

研究生: 林慧珍
Lin, Hui-Chen
論文名稱: 探討細胞自噬在霍奇金淋巴瘤中所扮演的角色
The role of autophagy in Hodgkin lymphoma
指導教授: 張孔昭
Chang, Kung-Chao
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 51
中文關鍵詞: 霍奇金氏淋巴瘤細胞自噬潛伏膜蛋白1EB病毒LC3
外文關鍵詞: Hodgkin lymphoma, Autophagy, LMP1, EBV, LC3
相關次數: 點閱:37下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 霍奇金氏淋巴瘤是一種惡性淋巴瘤,約有50%的患者和EB病毒感染有關。其在疾病初期治癒率較好,霍奇金氏淋巴瘤患者的五年存活率為86%。雖然霍奇金淋巴瘤治療效果良好,但初始化療方案中約有5%-10%的霍奇金氏淋巴瘤患者會復發,10%-30%的患者在初始治療後復發或變成難治性霍奇金淋巴瘤。因此,自體幹細胞移植(ASCT)是復發HL患者的治療標準,其治癒率約為50%。在某些研究指出,這些復發或難治性霍奇金淋巴瘤患者他們的基礎自噬量是增加的。而與EB病毒有關的其中一種潛伏膜蛋白LMP1可以促進細胞自噬,因此本研究想探討由LMP1所介導的細胞自噬在霍奇金氏淋巴瘤扮演什麼角色。我們分析了臨床數據,發現老年人、EB病毒與LMP1之間的相關性,進一步觀察整個亞型的霍奇金氏淋巴瘤整體對於性別、平均年齡、EB病毒、LMP1、細胞自噬標記LC3與霍奇金氏淋巴瘤3、4期患者的相關性。在細胞實驗我們利用L428-LMP1、KM-H2-EBV兩種霍奇金氏淋巴瘤細胞株進行實驗,主要利用細胞存活、死亡檢測及西方墨點法,來探討EB病毒或LMP1在霍奇金氏淋巴瘤中其細胞自噬的角色。我們發現LMP1轉染後會增強LC3的表現,當用細胞自噬抑制劑或臨床上常用來治療的化療藥物doxorubicin處理後,表現LMP1或EBV的霍奇金氏淋巴瘤細胞株會減弱與細胞自噬相關之細胞凋亡的表現量。綜合以上結果,我們霍奇金氏淋巴瘤的發展應與細胞自噬無關。此外,當LMP1或EBV存在於霍奇金氏淋巴瘤細胞株時,可部分地挽救由細胞自噬所引發的细胞凋亡。

    Hodgkin's lymphoma (HL), a malignant lymphoma is associated with Epstein-Barr virus (EBV) infection in about 50% of patients. The initial stage of HL has good response for chemotherapy and the five-year survival rate of patients with HL is 86%. Although HL shows good response to treatment, approximately 5%-10% of HLs recur after initial chemotherapy and 10%-30% of HLs relapse or become refractory after remission from initial therapy. Thus, autologous stem cell transplant (ASCT) is the standard of care for patients with relapsed HLs with a cure rate of approximately 50%. In some studies, expression of basal autophagy signals in the patients with relapsed or refractory HLs is increased. Given that EBV-latent membrane protein 1 (LMP1) has been found to promote autophagy, this study was intended to explore the role of autophagy mediated by EBV or LMP1 in HL. We analyzed clinical data and found a correlation between the elderly, Epstein-Barr virus and LMP1.However, expression of the autophagy marker LC3 in HL was an uncommon event (15%) and independent of EBV status and clinical outcome. In cell experiments, we used L428-LMP1 and KMH2-EBV two HL cell lines to explore the role of EBV or LMP1 in HL survival in association with autophagy expression. We found that LMP1 transfection enhanced autophagy expression; when treatment with chloroquine or doxorubicin, LMP1 or EBV attenuated autophagy-associated apoptosis of HL cells. Therefore, expression of autophagy signals is irrelevant in HL cells whose survival is independent of autophagy activation. Furthermore, LMP1 or EBV may partially rescue autophagy-associated apoptosis of HL cells.

    摘要 I Abstract II I. Abbreviations VII II. Introduction 1 1. Hodgkin Lymphoma 1 1.1 Epidemiology and etiology of Hodgkin lymphoma 1 1.2 Current diagnosis and treatments for Hodgkin lymphoma 2 2. Epstein-Barr Virus 3 2.1 The structure of EBV 3 2.2 The role of EBV in the pathophysiology of Hodgkin lymphoma 4 3. Autophagy 5 3.1 Autophagy plays an important role in tumorigenesis 5 3.2 Autophagy manipulation may be a novel therapy in Hodgkin lymphoma 7 III. Materials and Methods 9 Cell culture 9 Stable cell line generation 9 Establishment of lymphoblastoid cell lines 10 Cell viability 10 Cell death analysis 11 Western Blotting analysis 11 Immunohistochemistry stain 12 Subcutaneous xenograft mouse model 13 Statistical analysis 13 IV. Results 15 Relative frequency and clinicopathological features of HL 15 Correlation of survival with clinicopathological factors in HL patients 15 EBV infection in PBMC decreased autophagy expression 16 LMP1 transfection increased LC3 expression in HL cells 16 To understand which mechanism of autophagy involved in HL cell lines 17 V. Discussion 18 VI. Reference 20 VII. Figures and Tables 31 Table 1. Result of clinicopathologic features in HL. 31 Table 2. Clinicopathologic parameters affecting survival of HL patients. 32 Fig 1. Staining patterns of Autophagy markers in Hodgkin lymphoma cells (inset, x400). 33 Fig 2. EBV infection in PBMC decreased autophagy expression 34 Fig 3. LMP1 can increase LC3 express in HL cell lines. 35 Fig 4. In vivo effect of chloroquine. 42 Fig 5. In vitro effect of Doxorubicin. 49 Fig 6. The pathways of autophagy-associated molocular signals. 50 VIII. Appendix 51

    1. Bowden, R. A., Ljungman, P., and Snydman, D. R. (2012) Transplant infections, Lippincott Williams & Wilkins
    2. Franziska C. Eberle, M., Haresh Mani, MD, and Elaine S. Jaffe, MD. (2009) Histopathology of Hodgkin' s Lymphoma,
    3. Kusminsky, G., Abriata, G., Forman, D., and Sierra, M. S. (2016) Hodgkin lymphoma burden in Central and South America. Cancer epidemiology 44 Suppl 1, S158-S167
    4. Drexler, H. G., Pommerenke, C., Eberth, S., and Nagel, S. (2018) Hodgkin lymphoma cell lines: to separate the wheat from the chaff. Biological chemistry 399, 511-523
    5. CIBMTR. (2018) Instructions for Hodgkin’s and Non-Hodgkin’s Lymphoma Pre-HSCT Data (Form 2018) Center for International Blood and Marrow Transplant Research, Center for International Blood and Marrow Transplant Research
    6. Ansell, S. M. (2015) Hodgkin Lymphoma: Diagnosis and Treatment. Mayo Clinic proceedings 90, 1574-1583
    7. Wu, S. J., Chen, C. Y., Su, I. J., Tang, J. L., Chou, W. C., Ko, B. S., Huang, S. Y., Yao, M., Tsay, W., Chen, Y. C., Wang, C. H., and Tien, H. F. (2008) Clinical characteristics and treatment response of Hodgkin's lymphoma in Taiwan. J Formos Med Assoc 107, 4-12
    8. Chuang, S. S., Chen, S. W., Chang, S. T., and Kuo, Y. T. (2017) Lymphoma in Taiwan: Review of 1347 neoplasms from a single institution according to the 2016 Revision of the World Health Organization Classification. J Formos Med Assoc 116, 620-625
    9. Siegel, R. L., Miller, K. D., and Jemal, A. (2018) Cancer statistics, 2018. CA: a cancer journal for clinicians 68, 7-30
    10. Society, A. C. (2018) Cancer facts and figures 2018. American Cancer Society.
    11. Shanbhag, S., and Ambinder, R. F. (2018) Hodgkin lymphoma: A review and update on recent progress. CA: a cancer journal for clinicians 68, 116-132
    12. Hjalgrim, H., Askling, J., Rostgaard, K., Hamilton-Dutoit, S., Frisch, M., Zhang, J. S., Madsen, M., Rosdahl, N., Konradsen, H. B., Storm, H. H., and Melbye, M. (2003) Characteristics of Hodgkin's lymphoma after infectious mononucleosis. The New England journal of medicine 349, 1324-1332
    13. Agostinelli, C., and Pileri, S. (2014) Pathobiology of hodgkin lymphoma. Mediterranean journal of hematology and infectious diseases 6, e2014040
    14. Bonadonna, G., Bonfante, V., Viviani, S., Di Russo, A., Villani, F., and Valagussa, P. (2004) ABVD plus subtotal nodal versus involved-field radiotherapy in early-stage Hodgkin's disease: long-term results. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22, 2835-2841
    15. Kupeli, S. (2014) Risks and diagnosis of coronary artery disease in Hodgkin lymphoma survivors. World journal of cardiology 6, 555-561
    16. Ansell, S. M. (2018) Hodgkin lymphoma: 2018 update on diagnosis, risk-stratification, and management. American journal of hematology 93, 704-715
    17. Engert, A., Schiller, P., Josting, A., Herrmann, R., Koch, P., Sieber, M., Boissevain, F., Wit, M. d., Mezger, J., Dühmke, E., Willich, N., Müller, R.-P., Schmidt, B. F., Renner, H., Müller-Hermelink, H. K., Pfistner, B., Wolf, J., Hasenclever, D., Löffler, M., and Diehl, V. (2003) Involved-Field Radiotherapy Is Equally Effective and Less Toxic Compared With Extended-Field Radiotherapy After Four Cycles of Chemotherapy in Patients With Early-Stage Unfavorable Hodgkin’s Lymphoma: Results of the HD8 Trial of the German Hodgkin’s Lymphoma Study Group. Journal of Clinical Oncology 21, 3601-3608
    18. Kadin, M., and Rathore, B. (2010) Hodgkin’s Lymphoma Therapy: Past, Present, and Future. Expert opinion on pharmacotherapy 11, 2891-2906
    19. Cavalli, F., Kaye, S. B., Hansen, H. H., Armitage, J. O., and Piccart-Gebhart, M. (2009) Textbook of medical oncology, CRC Press
    20. DeVita Jr, J. (2001) PRINCIPLES & PRACTICE OF ONCOLOGY 6th EDITION. in Cancer Forum
    21. Fung, H. C., Stiff, P., Schriber, J., Toor, A., Smith, E., Rodriguez, T., Krishnan, A., Molina, A., Smith, D., Ivers, B., Kogut, N., Popplewell, L., Rodriguez, R., Somlo, G., Forman, S. J., and Nademanee, A. (2007) Tandem autologous stem cell transplantation for patients with primary refractory or poor risk recurrent Hodgkin lymphoma. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 13, 594-600
    22. Germi, R., Effantin, G., Grossi, L., Ruigrok, R. W., Morand, P., and Schoehn, G. (2012) Three-dimensional structure of the Epstein-Barr virus capsid. The Journal of general virology 93, 1769-1773
    23. Thorley-Lawson, D. A., and Gross, A. (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. The New England journal of medicine 350, 1328-1337
    24. Amon, W., and Farrell, P. J. (2005) Reactivation of Epstein-Barr virus from latency. Reviews in medical virology 15, 149-156
    25. de Jesus, O., Smith, P. R., Spender, L. C., Elgueta Karstegl, C., Niller, H. H., Huang, D., and Farrell, P. J. (2003) Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. The Journal of general virology 84, 1443-1450
    26. Babcock, G. J., Decker, L. L., Freeman, R. B., and Thorley-Lawson, D. A. (1999) Epstein-barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. The Journal of experimental medicine 190, 567-576
    27. Hammerschmidt, W. (2015) The Epigenetic Life Cycle of Epstein-Barr Virus. Current topics in microbiology and immunology 390, 103-117
    28. Tselis, A. (2012) Epstein-Barr virus cause of multiple sclerosis. Current opinion in rheumatology 24, 424-428
    29. Odumade, O. A., Hogquist, K. A., and Balfour, H. H. (2011) Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clinical microbiology reviews 24, 193-209
    30. Young, L. S., Dawson, C. W., and Eliopoulos, A. G. (2000) The expression and function of Epstein-Barr virus encoded latent genes. Molecular pathology : MP 53, 238-247
    31. Kang, M. S., and Kieff, E. (2015) Epstein-Barr virus latent genes. Experimental & molecular medicine 47, e131
    32. Farrell, K., and Jarrett, R. F. (2011) The molecular pathogenesis of Hodgkin lymphoma. Histopathology 58, 15-25
    33. Massini, G., Siemer, D., and Hohaus, S. (2009) EBV in Hodgkin Lymphoma. Mediterranean journal of hematology and infectious diseases 1, e2009013
    34. Vockerodt, M., Cader, F. Z., Shannon-Lowe, C., and Murray, P. (2014) Epstein-Barr virus and the origin of Hodgkin lymphoma. Chinese journal of cancer 33, 591-597
    35. Younes A, C. A., Johnson P, Dabaja B, Ansell S, Kuruvilla J. (2015) DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology. 10th ed. , Lippincott Williams & Wilkins
    36. Lam, N., and Sugden, B. (2003) LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments,
    37. Wu, S., Xie, P., Welsh, K., Li, C., Ni, C. Z., Zhu, X., Reed, J. C., Satterthwait, A. C., Bishop, G. A., and Ely, K. R. (2005) LMP1 protein from the Epstein-Barr virus is a structural CD40 decoy in B lymphocytes for binding to TRAF3. The Journal of biological chemistry 280, 33620-33626
    38. Grywalska, E., and Rolinski, J. (2015) Epstein-Barr virus-associated lymphomas. Seminars in oncology 42, 291-303
    39. Kieser, A., and Sterz, K. R. (2015) The Latent Membrane Protein 1 (LMP1). Current topics in microbiology and immunology 391, 119-149
    40. Incrocci, R., Barse, L., Stone, A., Vagvala, S., Montesano, M., Subramaniam, V., and Swanson-Mungerson, M. (2017) Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton's tyrosine kinase and STAT3. Virology 500, 96-102
    41. Incrocci, R., Hussain, S., Stone, A., Bieging, K., Alt, L. A., Fay, M. J., and Swanson-Mungerson, M. (2015) Epstein-Barr virus Latent Membrane Protein 2A (LMP2A)-mediated changes in Fas expression and Fas-dependent apoptosis: Role of Lyn/Syk activation. Cellular immunology 297, 108-119
    42. Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental cell 6, 463-477
    43. Bento, C. F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., Menzies, F. M., and Rubinsztein, D. C. (2016) Mammalian Autophagy: How Does It Work? Annual Review of Biochemistry 85, 685-713
    44. He, C., and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annual review of genetics 43, 67-93
    45. Eskelinen, E. L., and Saftig, P. (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochimica et biophysica acta 1793, 664-673
    46. Dikic, I., and Elazar, Z. (2018) Mechanism and medical implications of mammalian autophagy. Nature reviews. Molecular cell biology 19, 349-364
    47. Yu, L., Chen, Y., and Tooze, S. A. (2018) Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14, 207-215
    48. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal 19, 5720-5728
    49. Tanida, I., Ueno, T., and Kominami, E. (2008) LC3 and Autophagy. Methods in molecular biology (Clifton, N.J.) 445, 77-88
    50. Yoshioka, A., Miyata, H., Doki, Y., Yamasaki, M., Sohma, I., Gotoh, K., Takiguchi, S., Fujiwara, Y., Uchiyama, Y., and Monden, M. (2008) LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. International journal of oncology 33, 461-468
    51. Liang, X.-f., and Guan, X.-r. (2017) p62/SQSTM1: A potential molecular target for treatment of atherosclerosis. Frontiers in Laboratory Medicine 1, 104-106
    52. Moscat, J., and Diaz-Meco, M. T. (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001-1004
    53. Liu, C., Xu, P., Chen, D., Fan, X., Xu, Y., Li, M., Yang, X., and Wang, C. (2013) Roles of autophagy-related genes Beclin-1 and LC3 in the development and progression of prostate cancer and benign prostatic hyperplasia. Biomedical reports 1, 855-860
    54. Miracco, C., Cevenini, G., Franchi, A., Luzi, P., Cosci, E., Mourmouras, V., Monciatti, I., Mannucci, S., Biagioli, M., Toscano, M., Moretti, D., Lio, R., and Massi, D. (2010) Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Human pathology 41, 503-512
    55. Schmitz, K. J., Ademi, C., Bertram, S., Schmid, K. W., and Baba, H. A. (2016) Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World journal of surgical oncology 14, 189
    56. Masuda, G. O., Yashiro, M., Kitayama, K., Miki, Y., Kasashima, H., Kinoshita, H., Morisaki, T., Fukuoka, T., Hasegawa, T., Sakurai, K., Toyokawa, T., Kubo, N., Tanaka, H., Muguruma, K., Masaichi, O., and Hirakawa, K. (2016) Clinicopathological Correlations of Autophagy-related Proteins LC3, Beclin 1 and p62 in Gastric Cancer. Anticancer research 36, 129-136
    57. Guidetti, A., Carlo-Stella, C., Locatelli, S. L., Malorni, W., Pierdominici, M., Barbati, C., Mortarini, R., Devizzi, L., Matteucci, P., Marchiano, A., Lanocita, R., Farina, L., Dodero, A., Tarella, C., Di Nicola, M., Corradini, P., Anichini, A., and Gianni, A. M. (2012) Phase II study of sorafenib in patients with relapsed or refractory lymphoma. British journal of haematology 158, 108-119
    58. Klein, J. M., Henke, A., Sauer, M., Bessler, M., Reiners, K. S., Engert, A., Hansen, H. P., and von Strandmann, E. P. (2013) The histone deacetylase inhibitor LBH589 (panobinostat) modulates the crosstalk of lymphocytes with Hodgkin lymphoma cell lines. PloS one 8, e79502
    59. Pierdominici, M., Maselli, A., Locatelli, S. L., Ciarlo, L., Careddu, G., Patrizio, M., Ascione, B., Tinari, A., Carlo-Stella, C., Malorni, W., Matarrese, P., and Ortona, E. (2017) Estrogen receptor beta ligation inhibits Hodgkin lymphoma growth by inducing autophagy. Oncotarget 8, 8522-8535
    60. Zhang, H. (2018) Targeting autophagy in lymphomas: a double-edged sword? International journal of hematology 107, 502-512
    61. Birkenmeier, K., Moll, K., Newrzela, S., Hartmann, S., Drose, S., and Hansmann, M. L. (2016) Basal autophagy is pivotal for Hodgkin and Reed-Sternberg cells' survival and growth revealing a new strategy for Hodgkin lymphoma treatment. Oncotarget 7, 46579-46588
    62. Pierdominici, M., Barbati, C., Vomero, M., Locatelli, S. L., Carlo-Stella, C., Ortona, E., and Malorni, W. (2014) Autophagy as a pathogenic mechanism and drug target in lymphoproliferative disorders. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 28, 524-535
    63. Lee, D. Y., and Sugden, B. (2008) The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy. Oncogene 27, 2833-2842
    64. Hayat, M. (2017) Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, Academic Press
    65. Fotheringham, J. A., and Raab-Traub, N. (2015) Epstein-Barr virus latent membrane protein 2 induces autophagy to promote abnormal acinus formation. Journal of virology 89, 6940-6944
    66. Boyum, A. (1964) Separation of White Blood Cells. Nature 204, 793-794
    67. Hui-Yuen, J., McAllister, S., Koganti, S., Hill, E., and Bhaduri-McIntosh, S. (2011) Establishment of Epstein-Barr virus growth-transformed lymphoblastoid cell lines. Journal of visualized experiments : JoVE
    68. Hashmi, A. A., Hussain, Z. F., Hashmi, K. A., Zafar, M. I., Edhi, M. M., Faridi, N., and Khan, M. (2017) Latent membrane protein 1 (LMP1) expression in Hodgkin lymphoma and its correlation with clinical and histologic parameters. World journal of surgical oncology 15, 89
    69. Chang, K. C., Chen, P. C., Chen, Y. P., Chang, Y., and Su, I. J. (2011) Dominant expression of survival signals of endoplasmic reticulum stress response in Hodgkin lymphoma. Cancer science 102, 275-281
    70. Klimm, B., and Engert, A. (2009) Combined modality treatment of Hodgkin's lymphoma. Cancer journal (Sudbury, Mass.) 15, 143-149
    71. Hussain, T., and Mulherkar, R. (2012) Lymphoblastoid Cell lines: a Continuous in Vitro Source of Cells to Study Carcinogen Sensitivity and DNA Repair. International journal of molecular and cellular medicine 1, 75-87
    72. Ye, H., Chen, M., Cao, F., Huang, H., Zhan, R., and Zheng, X. (2016) Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC neurology 16, 178
    73. Alers, S., Loffler, A. S., Wesselborg, S., and Stork, B. (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and cellular biology 32, 2-11
    74. Lin, M.-C., Lin, Y.-C., Chen, S.-T., Young, T.-H., and Lou, P.-J. (2017) Therapeutic vaccine targeting Epstein-Barr virus latent protein, LMP1, suppresses LMP1-expressing tumor growth and metastasis in vivo. BMC Cancer 17, 18
    75. Price, A. M., Dai, J., Bazot, Q., Patel, L., Nikitin, P. A., Djavadian, R., Winter, P. S., Salinas, C. A., Barry, A. P., Wood, K. C., Johannsen, E. C., Letai, A., Allday, M. J., and Luftig, M. A. (2017) Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. eLife 6, e22509
    76. Zhang, X., Hu, L., Fadeel, B., and Ernberg, I. T. (2002) Apoptosis Modulation of Epstein–Barr Virus-Encoded Latent Membrane Protein 1 in the Epithelial Cell Line HeLa Is Stimulus-Dependent. Virology 304, 330-341
    77. Gharbaran, R., Park, J., Kim, C., Goy, A., and Suh, K. S. (2014) Circulating tumor cells in Hodgkin's lymphoma—A review of the spread of HL tumor cells or their putative precursors by lymphatic and hematogenous means, and their prognostic significance. Critical Reviews in Oncology/Hematology 89, 404-417
    78. Li, D. L., Wang, Z. V., Ding, G., Tan, W., Luo, X., Criollo, A., Xie, M., Jiang, N., May, H., Kyrychenko, V., Schneider, J. W., Gillette, T. G., and Hill, J. A. (2016) Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation 133, 1668-1687
    79. Cairns, R. A., Harris, I. S., and Mak, T. W. (2011) Regulation of cancer cell metabolism. Nature reviews. Cancer 11, 85-95
    80. Jiang, B.-H., and Liu, L.-Z. (2008) Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 11, 63-76
    81. Shi, W. Y., Xiao, D., Wang, L., Dong, L. H., Yan, Z. X., Shen, Z. X., Chen, S. J., Chen, Y., and Zhao, W. L. (2012) Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death &Amp; Disease 3, e275

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE