簡易檢索 / 詳目顯示

研究生: 吳嘉玲
Wu, Jia-Ling
論文名稱: 空氣污染與大氣溫度對腎臟功能下降風險之影響
Associations of air pollution and ambient temperature with risks of kidney function decline
指導教授: 李中一
Li, Chung-Yi
學位類別: 博士
Doctor
系所名稱: 醫學院 - 公共衛生學系
Department of Public Health
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 95
中文關鍵詞: 空氣污染環境溫度腎絲球過濾率慢性腎臟病流行病學研究糖尿病公共衛生
外文關鍵詞: air pollution, ambient temperature, estimated Glomerular Filtration Rate, chronic kidney disease, epidemiologic studies, diabetes mellitus, public health
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性腎臟病是全球重要的健康問題,環境因素如空氣污染和環境溫度被越來越多地認為是腎功能下降的重要決定因素。本論文探討長期空氣污染暴露和短期溫度變化對腎功能的影響,利用成人預防保健服務資料庫和全民健康保險資料庫數據,研究納入了2016年至2021年間參加成人預防保健服務的871,295名民眾。本論文檢視了包括PM2.5、PM10、NO2、SO2、CO和O3在內的空氣污染物與腎功能(以腎絲球過濾率eGFR測量)之間的關聯,並評估其環境溫度對腎功能的短期影響。
    本論文包括三個研究目的:(1)分析長期空氣污染對腎功能下降的影響;(2)評估糖尿病在環境暴露與腎功能下降之間關聯中的中介作用,探索導致慢性腎臟病的間接途徑;(3)探討短期環境溫度對腎功能的影響,特別關注滯後效應,以了解溫度變化如何影響腎功能。
    在第一部分中,採用了巢式病例對照研究設計來評估長期空氣污染對腎功能的影響。使用土地利用回歸(Land-use Regression, LUR)模型估算每日空氣污染物濃度,以提高暴露評估的精確性。研究找出66,397例eGFR下降30%以上的病例,以及24,285例eGFR下降40%以上的病例,並通過年齡、性別和基線eGFR及時間密度取樣1比1匹配對照組。這種方法減少了選樣誤差,提供了穩健的效應估計。結果顯示,每增加一單位IQR的PM2.5濃度暴露,eGFR下降30%以上的風險會增加2.61倍(調整後OR:2.61,95% CI:2.54-2.67)。
    第二部分則使用因果中介分析探討糖尿病在空氣污染與慢性腎臟病之間的中介作用。本部分共納入 2,832,765名研究對象,分析結果顯示,糖尿病僅解釋了空氣污染與慢性腎臟病之間關聯的一小部分(介於2%至9%之間),表明還有其他機制導致慢性腎臟病發生。
    在第三部分中,我們使用橫斷性研究設計,以混合線性模型評估了短期環境溫度的影響。此部分納入 3,545,833名研究對象,研究探索了不同暴露時段,包括1天、7天和30天滯後與7天和30天累積的平均溫度。高環境溫度與短期eGFR下降顯著相關,且以1天滯後溫度的影響最大,每上升1度C,eGFR會下降0.1(調整後β值為-0.099(95% CI:-0.103至-0.095),表明短期環境溫度對腎功能的顯著影響。
    本研究顯示環境因素對腎功能的重要影響。公共衛生政策應考慮將環境風險管理納入慢性腎臟病預防策略中,減少空氣污染物的暴露並管理溫度的影響。

    Chronic kidney disease (CKD) is a significant global health issue, with environmental factors such as air pollution and ambient temperature increasingly recognized as important determinants of kidney function decline. This study investigates the impact of long-term air pollution exposure and short-term temperature on kidney function among adults in Taiwan, utilizing data from the Adult Preventive Healthcare Services (APHS) Database and National Health Insurance (NHI) claims data. A total of 871,295 participants aged 35 years and older were included between 2016 and 2021. Air pollutants, including PM2.5, PM10, NO2, SO2, CO, and O3, were examined for their association with kidney function, measured by estimated glomerular filtration rate (eGFR). We also explored the association between short-term ambient temperature exposure and kidney function.
    The study aimed to: (1) analyze the long-term effects of air pollution on kidney function decline, addressing selection bias through nested case-control study designs; (2) evaluate the mediating role of diabetes mellitus in the association between environmental exposures and kidney function decline, thus exploring indirect pathways contributing to CKD; and (3) explore the short-term effects of ambient temperature on kidney function, particularly focusing on lagged effects to understand how temperature affect renal func-tion.
    In the first part, a nested case-control design was employed to assess the long-term impacts of air pollution on kidney function. Land-use Regression (LUR) modeling was used to estimate daily concentrations of air pollutants, improving the precision of exposure assessment. A total of 66,397 initial cases of a 30% or greater eGFR decline and 24,285 initial cases of a 40% or greater decline were identified, with 1:1 time density sampling matching to controls by age, sex, and baseline eGFR. This approach reduced selection bias and provided robust effect estimates. For each IQR increase in PM2.5, the adjusted odds ratio (aOR) for a 30% decline in eGFR was 2.61 (95% CI: 2.54-2.67).
    The second part focused on the mediating effect of diabetes in the relationship between air pollution and CKD using causal mediation analysis (CMA). The analysis revealed that diabetes mellitus explained only a limited proportion (ranging from 2% to 9%) of the association between air pollution and CKD, indicating that other mechanisms are also contributing to kidney function decline.
    In the third part, we evaluated the short-term effects of ambient temperature using a cross-sectional design. Different exposure timeframes, including 1-day, 7-day, and 30-day lag, as well as 7-day and 30-day cumulative mean temperatures, were examined. Higher temperatures were linked to greater reductions in kidney function, with each increase in 1-day lag temperature showing a notable decrease in eGFR levels. The adjusted β for the 1-day lag temperature was -0.099 (95% CI: -0.103 to -0.095), indicating a notable impact of temperature on renal function.
    Public health policies should consider integrating environmental risk management into CKD prevention strategies, with a focus on reducing exposure to harmful pollutants and managing the impacts of extreme temperatures.

    摘要 I Abstract III 致謝 V Contents VI Chapter 1 Introduction 1 1.1 Background and epidemiology of kidney disease 1 1.2 Environmental factors affecting kidney function 2 1.3 Overview of dissertation structure 3 Chapter 2 Literature review 4 2.1 Air pollution and kidney function decline 4 2.2 Ambient temperature and kidney function decline 12 Specific aims 16 Chapter 3 Materials and Methods 17 3.1 Association between long-term exposure to air pollution and kidney function decline 17 3.1.1 Introduction 17 3.1.2 Material and methods 18 3.2 Mediation analysis of diabetes mellitus on the relationship between air pollution and chronic kidney disease 25 3.2.1 Introduction 25 3.2.2 Material and methods 27 3.3 Association between short-term exposure to ambient temperature and kidney function decline 32 3.3.1 Introduction 32 3.3.2 Material and methods 34 Chapter 4 Results 38 4.1 Association between long-term exposure to air pollution and kidney function decline 38 4.2 Mediation analysis of diabetes mellitus on the relationship between air pollution and chronic kidney disease 47 4.3 Association between short-term exposure to ambient temperature and kidney function decline 52 Chapter 5 Discussion 60 5.1 Association between long-term exposure to air pollution and kidney function decline 60 5.2 Mediation analysis of diabetes mellitus on the relationship between air pollution and chronic kidney disease 64 5.3 Association between short-term exposure to ambient temperature and kidney function decline 66 Chapter 6 General conclusion 68 Reference 70

    Afsar, B., Elsurer Afsar, R., Kanbay, A., Covic, A., Ortiz, A., & Kanbay, M. (2019). Air pollution and kidney disease: Review of current evidence. Clinical Kidney Journal, 12(1), 19-32. https://doi.org/10.1093/ckj/sfy111
    Al-Bouwarthan, M., AlMulla, A. A., & Yaseen, M. (2022). The impact of heat on kidney health: A PRISMA-compliant bibliometric analysis. Medicine, 101(36), e30328. https://doi.org/10.1097/MD.0000000000030328
    Alderete, T. L., Habre, R., Toledo-Corral, C. M., Berhane, K., Chen, Z., Lurmann, F. W., Weigensberg, M. J., Goran, M. I., & Gilliland, F. D. (2017). Longitudinal associations between ambient air pollution with insulin sensitivity, β-cell function, and adiposity in Los Angeles Latino children. Diabetes, 66(7), 1789–1799. https://doi.org/10.2337/db16-1416
    Babaan, J., Hsu, F. T., Wong, P. Y., Chen, P. C., Guo, Y. L., Lung, S. C. C., et al. (2023). A Geo-AI-based ensemble mixed spatial prediction model with fine spatial-temporal resolution for estimating daytime/nighttime/daily average ozone concentrations variations in Taiwan. Journal of Hazardous Materials, 446, 130749. https://doi.org/10.1016/j.jhazmat.2023.130749
    Basu, R., & Samet, J. M. (2002). Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiologic Re-views, 24(2), 190-202. https://doi.org/10.1093/epirev/mxf007
    Bennett, J. E., Blangiardo, M., Fecht, D., Elliott, P., & Ezzati, M. (2019). Vulnera-bility to the mortality effects of warm temperature in the districts of England and Wales. Nature Climate Change, 4(4), 269-273. https://doi.org/10.1038/nclimate2123
    Bowe, B., Xie, Y., Li, T., & Al-Aly, Z. (2017). Associations of ambient coarse par-ticulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: A cohort study. The Lancet Planetary Health, 1(7), e267-e276. https://doi.org/10.1016/S2542-5196(17)30117-1
    Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2017). Particulate matter air pollution and the risk of incident CKD and progression to ESRD. Journal of the American Society of Nephrology, 29(1):218-230. https://doi.org/10.1681/ASN.2017030253
    Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). Changes in the US burden of chronic kidney disease from 2002 to 2016: An analysis of the Glob-al Burden of Disease Study. JAMA Network Open, 1(7), e184412. https://doi.org/10.1001/jamanetworkopen.2018.4412.
    Bowe, B., Xie, Y., Yan, Y., Xian, H., & Al-Aly, Z. (2020). Diabetes minimally me-diated the association between PM₂.₅ air pollution and kidney outcomes. Sci-entific Reports, 10(1), 4586. https://doi.org/10.1038/s41598-020-61115-x
    Brooks, D. R., Ramirez-Rubio, O., & Amador, J. J. (2012). CKD in Central Ameri-ca: a hot issue. American journal of kidney diseases : the official journal of the National Kidney Foundation, 59(4), 481–484. https://doi.org/10.1053/j.ajkd.2012.01.005
    Brook, R. D., Rajagopalan, S., Pope, C. A., III, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Jr., Whitsel, L., Kaufman, J. D., & American Heart Association Council on Epidemiology and Prevention, Coun-cil on the Kidney in Cardiovascular Disease, and Council on Nutrition, Phys-ical Activity and Metabolism. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the Ameri-can Heart Association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1
    Brook, R. D., Xu, X., Bard, R. L., Dvonch, J. T., Morishita, M., Kaciroti, N., Sun, Q., Harkema, J., & Rajagopalan, S. (2013). Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Science of the Total Environment, 448, 66–71. https://doi.org/10.1016/j.scitotenv.2012.07.034
    Brook, R. D., Jerrett, M., Brook, J. R., Bard, R. L., Finkelstein, M. M., & Pope, C. A. (2012). Air pollution and type 2 diabetes: Mechanistic insights. Diabetes, 61(12), 3037–3045. https://doi.org/10.2337/db12-0190
    Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S. C., Jr, Tager, I., & Expert Panel on Population and Prevention Science of the American Heart Association (2004). Air pollution and cardiovascular disease: a statement for healthcare profes-sionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655–2671. https://doi.org/10.1161/01.CIR.0000128587.30041.C8
    Chang, Y. T., Wu, J. L., Hsu, C. C., Wang, J. D., & Sung, J. M. (2014). Diabetes and end-stage renal disease synergistically contribute to increased incidence of cardiovascular events: A nationwide follow-up study during 1998–2009. Diabetes Care, 37(1), 277–285. https://doi.org/10.2337/dc13-0781
    Chung, C. Y., Wu, S. Y., Chiu, H. H., Wu, T. N., Wang, Y. T., Lin, M. Y., & the iH3 Research Group (2023). Associations of air pollutant concentrations with longitudinal kidney function changes in patients with chronic kidney dis-ease. Scientific reports, 13(1), 9609. https://doi.org/10.1038/s41598-023-36682-4
    Central Weather Bureau. (2024). Heat Information. Taiwan Central Weather Bu-reau. Retrieved from: https://www.cwa.gov.tw/V8/E/P/Warning/W29.html
    Centers for Disease Control and Prevention. (2021). Chronic kidney disease in adults with diabetes. U.S. Department of Health & Human Services. https://www.cdc.gov/diabetes/diabetes-complications/diabetes-and-chronic-kidney-disease.html
    Chan, C. C., Chuang, K. J., Chien, L. C., Chen, W. J., & Chang, W. T. (2006). Ur-ban air pollution and emergency admissions for cerebrovascular diseases in Taipei, Taiwan. European heart journal, 27(10), 1238–1244. https://doi.org/10.1093/eurheartj/ehi835
    Chang, P. Y., Li, Y. L., Chuang, T. W., Chen, S. Y., Lin, L. Y., Lin, Y. F., & Chiou, H. Y. (2022). Exposure to ambient air pollutants with kidney function decline in chronic kidney disease patients. Environmental research, 215(Pt 2), 114289. https://doi.org/10.1016/j.envres.2022.114289
    Chapman, C. L., & Schlader, Z. J. (2024). Extreme heat stress in older adults: A punch to the gut, kidneys or more?. Experimental physiology, 10.1113/EP092340. Advance online publication. https://doi.org/10.1113/EP092340
    Chen, H. F., Ho, C. A., & Li, C. Y. (2019). Risk of heart failure in a population with type 2 diabetes versus a population without diabetes with and without coro-nary heart disease. Diabetes, obesity & metabolism, 21(1), 112–119. https://doi.org/10.1111/dom.13493
    Chen, S. Y., Chu, D. C., Lee, J. H., Yang, Y. R., & Chan, C. C. (2018). Traf-fic-related air pollution associated with chronic kidney disease among elderly residents in Taipei City. Environmental pollution (Barking, Essex : 1987), 234, 838–845. https://doi.org/10.1016/j.envpol.2017.11.084
    Chen, Y., Cao, F., Xiao, J. P., Zhang, Y., Yang, X., & Wang, Y. (2021). Emerging role of air pollution in chronic kidney disease. Environmental Science and Pollution Research, 28(39), 52610–52624. https://doi.org/10.1007/s11356-021-16031-6
    Cheng, W., Zhang, D., & Li, Y. (2021). Oxidative stress and insulin resistance: The key link in the pathogenesis of air pollution-induced type 2 diabetes. Antioxi-dants, 10(8), 1234. https://doi.org/10.3390/antiox10081234
    Cherney, D. Z. I., Dagogo-Jack, S., McGuire, D. K., Cosentino, F., Pratley, R., Shih, W. J., Frederich, R., Maldonado, M., Liu, J., Wang, S., Cannon, C. P., & VERTIS CV Investigators (2021). Kidney outcomes using a sustained ≥40% decline in eGFR: A meta-analysis of SGLT2 inhibitor trials. Clinical cardiol-ogy, 44(8), 1139–1143. https://doi.org/10.1002/clc.23665
    Copur, S., Ucku, D., & Kanbay, M. (2022). Increase in the global burden of chronic kidney disease: Might it be attributable to air pollution? Clinical Kidney Journal, 15(10), 1774–1776. https://doi.org/10.1093/ckj/sfac101
    Coresh, J., Turin, T. C., Matsushita, K., Sang, Y., Ballew, S. H., Appel, L. J., ... & Gansevoort, R. T. (2014). Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA, 311(24), 2518–2531. https://doi.org/10.1001/jama.2014.6634
    Delfino, R. J., Staimer, N., & Vaziri, N. D. (2011). Air pollution and circulating biomarkers of oxidative stress. Air quality, atmosphere, & health, 4(1), 37–52. https://doi.org/10.1007/s11869-010-0095-2
    Delfino, R. J., Wu, J., Tjoa, T., Gullesserian, S. K., Nickerson, B., & Gillen, D. L. (2014). Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution. Epidemiology (Cambridge, Mass.), 25(1), 48–57. https://doi.org/10.1097/EDE.0000000000000016
    Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 295(10), 1127–1134. https://doi.org/10.1001/jama.295.10.1127
    Eze, I. C., Hemkens, L. G., Bucher, H. C., Hoffmann, B., Schindler, C., Künzli, N., Schikowski, T., & Probst-Hensch, N. M. (2015). Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environmental health perspectives, 123(5), 381–389. https://doi.org/10.1289/ehp.1307823
    Filardo, G., Adams, J., Ng, H.K.T. (2011). Statistical Methods in Epidemiology. In: Lovric, M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_547
    Gallagher, A., Johnson, R. J., Roncal-Jimenez, C., Lanaspa, M. A., & Sánchez-Lozada, L. G. (2023). Climate change, heat-related acute kidney disease, and the need for action. American Journal of Kidney Diseases, 81(5), 501–503. https://doi.org/10.1053/j.ajkd.2022.12.014
    García-Trabanino, R., Jarquín, E., Wesseling, C., Johnson, R. J., González-Quiroz, M., Weiss, I., Glaser, J., Vindell, J. J., Stockfelt, L., Roncal, C., Harra, T., & Barregard, L. (2015). Heat stress, dehydration, and kidney function in sugar-cane cutters in El Salvador – A cross-shift study of workers at risk of Mesoa-merican nephropathy. Environmental Research, 142, 746–755. https://doi.org/10.1016/j.envres.2015.07.007
    Gauthier, J., Wu, Q. V., & Gooley, T. A. (2020). Cubic splines to model relation-ships between continuous variables and outcomes: a guide for clinicians. Bone marrow transplantation, 55(4), 675–680. https://doi.org/10.1038/s41409-019-0679-x
    Giam, B., Kaye, D. M., & Rajapakse, N. W. (2016). Role of Renal Oxidative Stress in the Pathogenesis of the Cardiorenal Syndrome. Heart, lung & circula-tion, 25(8), 874–880. https://doi.org/10.1016/j.hlc.2016.02.022
    Gilani, O., Urbanek, S., & Kane, M. J. (2020). Distributions of human exposure to ozone during commuting hours in Connecticut using the cellular device net-work. Journal of Agricultural, Biological and Environmental Statistics, 25(1), 54–73. https://doi.org/10.1007/s13253-019-00378-y
    Glaser, J., Lemery, J., Rajagopalan, B., Diaz, H. F., & Johnson, R. J. (2022). Cli-mate change and the risk of kidney disease. American Journal of Kidney Dis-eases, 79(4), 567-578. https://doi.org/10.1053/j.ajkd.2022.01.015
    Grimes, D. A., & Schulz, K. F. (2002). Bias and causal associations in observational research. Lancet (London, England), 359(9302), 248–252. https://doi.org/10.1016/S0140-6736(02)07451-2
    Hajat, S., O'Connor, M., & Kosatsky, T. (2010). Health effects of hot weather: from awareness of risk factors to effective health protection. Lancet (London, Eng-land), 375(9717), 856–863. https://doi.org/10.1016/S0140-6736(09)61711-6
    Hajat, S., Casula, A., Murage, P., Omoyeni, D., Gray, T., Plummer, Z., Steenkamp, R., & Nitsch, D. (2024). Ambient heat and acute kidney injury: Case-crossover analysis of 1,354,675 automated e-alert episodes linked to high-resolution climate data. The Lancet Planetary Health, 8(1), e12–e21. https://doi.org/10.1016/S2542-5196(24)00008-1
    He, P., Chen, R., Zhou, L., Li, Y., Su, L., Dong, J., Zha, Y., Lin, Y., Nie, S., Hou, F. F., & Xu, X. (2022). Higher ambient nitrogen dioxide is associated with an elevated risk of hospital-acquired acute kidney injury. Clinical Kidney Jour-nal, 15(1), 95–100. https://doi.org/10.1093/ckj/sfab164
    Hendryx, M., Zullig, K. J., & Luo, J. (2020). Impacts of Coal Use on Health. Annual review of public health, 41, 397–415. https://doi.org/10.1146/annurev-publhealth-040119-094104
    Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio- respira-tory mortality: a review. Environmental health: a global access science source, 12(1), 43. https://doi.org/10.1186/1476-069X-12-43
    Hsu, C. Y., McCulloch, C. E., Fan, D., Ordoñez, J. D., Chertow, G. M., & Go, A. S. (2007). Community-based incidence of acute renal failure. Kidney interna-tional, 72(2), 208–212. https://doi.org/10.1038/sj.ki.5002297
    Hwang, S. J., Tsai, J. C., & Chen, H. C. (2010). Epidemiology, impact and preven-tive care of chronic kidney disease in Taiwan. Nephrology (Carlton, Vic.), 15 Suppl 2, 3–9. https://doi.org/10.1111/j.1440-1797.2010.01304.x
    Jerrett, M., Burnett, R. T., Pope, C. A. III, Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E., & Thun, M. (2009). Long-term ozone exposure and mortality. New England Journal of Medicine, 360(11), 1085–1095. https://doi.org/10.1056/NEJMoa0803894
    Jeong, S. M., Park, J. H., Kim, H. J., Kwon, H., & Hwang, S. E. (2020). Effects of abdominal obesity on the association between air pollution and kidney func-tion. International Journal of Obesity, 44(7), 1568–1576. https://doi.org/10.1038/s41366-020-0540-8
    Jha, R., Lopez-Trevino, S., Kankanamalage, H. R., & Jha, J. C. (2024). Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines, 12(5), 1098. https://doi.org/10.3390/biomedicines12051098
    Johansen, K. L., Chertow, G. M., Foley, R. N., Gilbertson, D. T., Herzog, C. A., Ishani, A., Israni, A. K., Ku, E., Kurella Tamura, M., Li, S., Li, S., Liu, J., Ob-rador, G. T., O'Hare, A. M., Peng, Y., Powe, N. R., Roetker, N. S., St Peter, W. L., Abbott, K. C., Chan, K. E., … Wetmore, J. B. (2021). US Renal Data Sys-tem 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. American journal of kidney diseases : the official journal of the Na-tional Kidney Foundation, 77(4 Suppl 1), A7–A8. https://doi.org/10.1053/j.ajkd.2021.01.002
    Johnson, R. J., Sánchez-Lozada, L. G., Newman, L. S., Lanaspa, M. A., Diaz, H. F., Lemery, J., Rodriguez-Iturbe, B., Tolan, D. R., Butler-Dawson, J., Sato, Y., Garcia, G., Hernando, A. A., & Roncal-Jimenez, C. A. (2019). Climate Change and the Kidney. Annals of nutrition & metabolism, 74 Suppl 3, 38–44. https://doi.org/10.1159/000500344
    Khoshnaw, L. J., Johnson, R. J., & Young, S. E. (2024). Ten tips on how to care for your CKD patients in episodes of extreme heat. Clinical Kidney Journal, 17(6), sfae156. https://doi.org/10.1093/ckj/sfae156
    Kilbo Edlund, K., Andersson, E. M., Andersson, M., Persson, B., & Torén, K. (2024). Occupational particle exposure and chronic kidney disease: A cohort study in Swedish construction workers. Occupational and Environmental Medicine, 81(5), 238–243. https://doi.org/10.1136/oemed-2023-108903
    Kim, H. J., Min, J. Y., Seo, Y. S., & Min, K. B. (2018). Association between expo-sure to ambient air pollution and renal function in Korean adults. Annals of occupational and environmental medicine, 30, 14. https://doi.org/10.1186/s40557-018-0226-z
    Kim, K. N., Shin, M. K., Lim, Y. H., Bae, S., Kim, J. H., Hwang, S. S., Kim, M. J., Oh, J., Lim, H., Choi, J., & Kwon, H. J. (2023). Associations of cold exposure with hospital admission and mortality due to acute kidney injury: A nation-wide time-series study in Korea. The Science of the total environment, 863, 160960. https://doi.org/10.1016/j.scitotenv.2022.160960
    Kilbo Edlund, K., Xu, Y., Andersson, E. M., Christensson, A., Dehlin, M., Forsblad-d'Elia, H., Harari, F., Ljunggren, S., Molnár, P., Oudin, A., Svarten-gren, M., Ljungman, P., & Stockfelt, L. (2024). Long-term ambient air pollu-tion exposure and renal function and biomarkers of renal dis-ease. Environmental health : a global access science source, 23(1), 67. https://doi.org/10.1186/s12940-024-01108-9
    Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: a critical re-view. Annual review of public health, 29, 41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843
    Kovesdy C. P. (2022). Epidemiology of chronic kidney disease: an update 2022. Kidney international supplements, 12(1), 7–11. https://doi.org/10.1016/j.kisu.2021.11.003
    Lao, X. Q., Bo, Y., Chen, D., Zhang, K., & Szeto, C. C. (2024). Environmental pol-lution to kidney disease: an updated review of current knowledge and future directions. Kidney international, 106(2), 214–225. https://doi.org/10.1016/j.kint.2024.04.021
    Lee, W., Wu, X., Heo, S., Schwartz, J., Dominici, F., Zanobetti, A., Kioumourt-zoglou, M. A., & Di, Q. (2022). Associations between long-term air pollution exposure and first hospital admission for kidney and total urinary system dis-eases in the US Medicare population: Nationwide longitudinal cohort study. BMJ Medicine, 1(1), e000009. https://doi.org/10.1136/bmjmed-2021-000009
    Levey, A. S., & Coresh, J. (2012). Chronic kidney disease. Lancet (London, Eng-land), 379(9811), 165–180. https://doi.org/10.1016/S0140-6736(11)60178-5
    Levey, A. S., Grams, M. E., & Inker, L. A. (2022). Uses of GFR and Albuminuria Level in Acute and Chronic Kidney Disease. The New England journal of medicine, 386(22), 2120–2128. https://doi.org/10.1056/NEJMra2201153
    Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., 3rd, Feld-man, H. I., Kusek, J. W., Eggers, P., Van Lente, F., Greene, T., Coresh, J., & CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009). A new equation to estimate glomerular filtration rate. Annals of internal medi-cine, 150(9), 604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
    Levin, A., Agarwal, R., Herrington, W. G., Heerspink, H. L., Mann, J. F. E., Shahinfar, S., Tuttle, K. R., Donner, J. A., Jha, V., Nangaku, M., de Zeeuw, D., Jardine, M. J., Mahaffey, K. W., Thompson, A. M., Beaucage, M., Chong, K., Roberts, G. V., Sunwold, D., Vorster, H., Warren, M., … participant authors of the International Society of Nephrology’s 1st International Consensus Meeting on Defining Kidney Failure in Clinical Trials (2020). International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney international, 98(4), 849–859. https://doi.org/10.1016/j.kint.2020.07.013
    Li, S., Guo, B., Jiang, Y., Wang, X., Chen, L., Wang, X., Chen, T., Yang, L., Silang, Y., & He, Y. (2023). Long-term exposure to ambient PM2.5 and its compo-nents associated with diabetes: Evidence from a large population-based cohort from China. Diabetes Care, 46(1), 111–121. https://doi.org/10.2337/dc22-1304
    Libetta, C., Sepe, V., Esposito, P., Galli, F., & Dal Canton, A. (2011). Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clinical biochemistry, 44(14-15), 1189–1198. https://doi.org/10.1016/j.clinbiochem.2011.06.988
    Lim, Y. H., So, R., Lee, C., Hong, Y. C., Park, M., Kim, L., & Yoon, H. J. (2018). Ambient temperature and hospital admissions for acute kidney injury: A time-series analysis. The Science of the total environment, 616-617, 1134–1138. https://doi.org/10.1016/j.scitotenv.2017.10.207
    Lin, C. Y., Wu, C. C., Chen, Y. H., & Chen, C. J. (2020). Air pollution and kidney function: A review of epidemiological evidence. American Journal of Kidney Diseases, 76(4), 537-547. https://doi.org/10.1053/j.ajkd.2020.05.021
    Lin, S. Y., Ju, S. W., Lin, C. L., Hsu, W. H., Lin, C. C., Ting, I. W., & Kao, C. H. (2020). Air pollutants and subsequent risk of chronic kidney disease and end-stage renal disease: A population-based cohort study. Environmental pol-lution (Barking, Essex: 1987), 261, 114154. https://doi.org/10.1016/j.envpol.2020.114154
    Lung, S. C., Wu, T. N., Ruchirawat, M., & Guo, H. R. (2019). Urban–rural disparity of PM2.5 exposure and its impact on chronic kidney disease: Evidence from Taiwan. Aerosol and Air Quality Research, 19(1), 45–55. https://doi.org/10.4209/aaqr.2019.01.0024
    Masajtis-Zagajewska, A., Pawłowicz, E., & Nowicki, M. (2021). Effect of short-term cold exposure on central aortic blood pressure in patients with CKD. Nephron, 145(1), 20–26. https://doi.org/10.1159/000510365
    Matsumoto, T., Iwai, H., & Kamide, K. (2020). Effect of short-term cold exposure on central aortic blood pressure in patients with chronic kidney disease. Nephron, 145(1), 20–28. https://doi.org/10.1159/000506693
    Mayr, A., Fenske, N., Hofner, B., Kneib, T. and Schmid, M. (2012), Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61: 403-427. https://doi.org/10.1111/j.1467-9876.2011.01033.x
    Mehta, A. J., Zanobetti, A., Bind, M. A., Kloog, I., Koutrakis, P., Sparrow, D., Vokonas, P. S., & Schwartz, J. D. (2016). Long-Term Exposure to Ambient Fine Particulate Matter and Renal Function in Older Men: The Veterans Ad-ministration Normative Aging Study. Environmental health perspec-tives, 124(9), 1353–1360. https://doi.org/10.1289/ehp.1510269
    National Institute of Diabetes and Digestive and Kidney Diseases. (2022). 2022 USRDS Annual Data Report: International comparisons in end-stage renal disease. United States Renal Data System. https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/11-international-comparisons
    Park, S. K., Adar, S. D., O'Neill, M. S., Auchincloss, A. H., Szpiro, A., Bertoni, A. G., Navas-Acien, A., Kaufman, J. D., & Diez-Roux, A. V. (2015). Long-term exposure to air pollution and type 2 diabetes mellitus in a multiethnic cohort. American Journal of Epidemiology, 181(5), 327–336. https://doi.org/10.1093/aje/kwu280
    Park, M. Y., Ahn, J., Bae, S., Chung, B. H., Myong, J. P., Lee, J., & Kang, M. Y. (2024). Effects of cold and hot temperatures on the renal function of people with chronic disease. Journal of occupational health, 66(1), uiae037. https://doi.org/10.1093/joccuh/uiae037
    Qu, Y., Zhang, W., Boutelle, A. M., Ryan, I., Deng, X., Liu, X., & Lin, S. (2023). Associations Between Ambient Extreme Heat Exposure and Emergency De-partment Visits Related to Kidney Disease. American journal of kidney dis-eases: the official journal of the National Kidney Foundation, 81(5), 507–516.e1. https://doi.org/10.1053/j.ajkd.2022.09.005
    Rajagopalan, S., & Brook, R. D. (2016). Connecting PM2.5 exposure to insulin re-sistance: Oxidative stress may be an intermediate step. Environmental Health Perspectives, 124(12), A236. https://doi.org/10.1289/ehp.124-A236
    Rao, X., Patel, P., Puett, R., & Rajagopalan, S. (2015). Air pollution as a risk factor for type 2 diabetes. Toxicological Sciences, 143(2), 231–241. https://doi.org/10.1093/toxsci/kfu250
    Rajagopalan, S., Al-Kindi, S. G., & Brook, R. D. (2018). Air Pollution and Cardio-vascular Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 72(17), 2054–2070. https://doi.org/10.1016/j.jacc.2018.07.099
    Rajagopalan, S., & Brook, R. D. (2012). Air pollution and type 2 diabetes: Mecha-nistic insights. Environmental Health Perspectives, 120(9), A373–A382. https://doi.org/10.1289/ehp.124-A236
    Robins, J. M., Prentice, R. L., & Blevins, D. (1989). Designs for synthetic case-control studies in open cohorts. Biometrics, 45(4), 1103–1116.
    Robins, J. M., Gail, M. H., & Lubin, J. H. (1986). More on “Biased Selection of Controls for Case-Control Analyses of Cohort Studies.” Biometrics, 42(2), 293–299. https://doi.org/10.2307/2531050
    Roncal-Jimenez, C., García-Trabanino, R., Barregard, L., Lanaspa, M. A., Wes-seling, C., Harra, T., Aragón, A., Grases, F., Jarquin, E. R., González, M. A., Weiss, I., Glaser, J., Sánchez-Lozada, L. G., & Johnson, R. J. (2016). Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Per-spective on Mesoamerican Nephropathy. American journal of kidney diseases : the official journal of the National Kidney Foundation, 67(1), 20–30. https://doi.org/10.1053/j.ajkd.2015.08.021
    Sasai, F., Roncal-Jimenez, C., Rogers, K., Sato, Y., Brown, J. M., Glaser, J., Garcia, G., Sanchez-Lozada, L. G., Rodriguez-Iturbe, B., Dawson, J. B., Sorensen, C., Hernando, A. A., Gonzalez-Quiroz, M., Lanaspa, M., Newman, L. S., & Johnson, R. J. (2023). Climate change and nephrology. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 38(1), 41–48. https://doi.org/10.1093/ndt/gfab258
    Scammell, M. K., Montoya, M. F., & Kaufman, J. D. (2019). Environmental and occupational exposures in kidney disease. Seminars in Nephrology, 39(3), 230–243. https://doi.org/10.1016/j.semnephrol.2019.02.003
    Schwartz, J., Bind, M. A., & Koutrakis, P. (2017). Estimating Causal Effects of Lo-cal Air Pollution on Daily Deaths: Effect of Low Levels. Environmental health perspectives, 125(1), 23–29. https://doi.org/10.1289/EHP232
    Shen, H. N., Lu, C. L., & Li, C. Y. (2012). Dementia increases the risks of acute or-gan dysfunction, severe sepsis and mortality in hospitalized older patients: a national population-based study. PloS one, 7(8), e42751. https://doi.org/10.1371/journal.pone.0042751
    Shubham, S., Kumar, M., Sarma, D. K., Kumawat, M., Verma, V., & Singh, S. (2022). Role of air pollution in chronic kidney disease: An update on evidence, mechanisms, and mitigation strategies. International Archives of Occupational and Environmental Health, 95(5), 897–908. https://doi.org/10.1007/s00420-021-01808-6
    Teichert, T., Vossoughi, M., Vierkötter, A., Sugiri, D., Schikowski, T., & Krämer, U. (2013). Association between traffic-related air pollution, subclinical inflam-mation, and impaired glucose metabolism: Results from the SALIA study. PLOS ONE, 8(12), e83042. https://doi.org/10.1371/journal.pone.0083042
    TWEPA. Introduction of Central Monitoring Sensors. 2020. https://airtw.epa.gov.tw/CHT/EnvMonitoring/Central/Tools.aspx.
    Tsai, H. J., Wu, P. Y., Huang, J. C., & Chen, S. C. (2021). Environmental Pollution and Chronic Kidney Disease. International journal of medical sciences, 18(5), 1121–1129. https://doi.org/10.7150/ijms.51594
    U.S. Environmental Protection Agency. (2019). Integrated science assessment (ISA) for particulate matter. U.S. Environmental Protection Agency. https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter
    Verbeke, G., & Molenberghs, G. (2000). Verbeke, G. 與 Molenberghs, G. (2000)。 *Linear mixed models for longitudinal data. Springer. https://doi.org/10.1007/978-1-4419-0300-6
    Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J., Belesova, K., ... & Costello, A. (2021). Urban heat: An increasing threat to global health. BMJ, 375, n2467. https://doi.org/10.1136/bmj.n2467
    Wang, J., Zhang, L., Tang, S. C. W., Kashihara, N., Kim, Y. S., Togtokh, A., Yang, C. W., & Zhao, M. H. (2018). Disease burden and challenges of chronic kid-ney disease in North and East Asia. Kidney International, 94(1), 22–25. https://doi.org/10.1016/j.kint.2017.12.022
    Wang, W., Wu, C., Mu, Z., Zhang, Y., Chen, H., Li, C., & Wang, H. (2020). Effect of ambient air pollution exposure on renal dysfunction among hospitalized patients in Shanghai, China. Public Health, 181, 196–201. https://doi.org/10.1016/j.puhe.2020.01.001
    Wesseling, C., Crowe, J., Hogstedt, C., Jakobsson, K., Lucas, R., & Wegman, D. H. (2013). The epidemic of chronic kidney disease of unknown etiology in Mes-oamerica: A call for interdisciplinary research and action. Occupational and Environmental Medicine, 70(10), 716–718. https://doi.org/10.1136/oemed-2013-101591
    Wolf, K., Popp, A., Schneider, A., Breitner, S., Hampel, R., Rathmann, W., Herder, C., Roden, M., Koenig, W., Meisinger, C., Peters, A., & KORA-Study Group (2016). Association Between Long-term Exposure to Air Pollution and Bi-omarkers Related to Insulin Resistance, Subclinical Inflammation, and Adi-pokines. Diabetes, 65(11), 3314–3326. https://doi.org/10.2337/db15-1567
    Wong, P. Y., Lee, H. Y., Zeng, Y. T., Chern, Y. R., Chen, N. T., Candice Lung, S. C., Su, H. J., & Wu, C. D. (2021). Using a land use regression model with machine learning to estimate ground level PM2.5. Environmental Pollu-tion, 277, Article 116846. https://doi.org/10.1016/j.envpol.2021.116846
    Wong, P. Y., Hsu, C. Y., Wu, J. Y., Teo, T. A., Huang, J. W., Guo, H. R., Su, H. J., Wu, C. D., & Spengler, J. D. (2021). Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan. Environmental Modelling and Software, 139, Article 104996. https://doi.org/10.1016/j.envsoft.2021.104996
    Wong, P. Y., Su, H. J., Lee, H. Y., Chen, Y. C., Hsiao, Y. P., Huang, J. W., Teo, T. A., Wu, C. D., & Spengler, J. D. (2021). Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan. Journal of Cleaner Production, 317, Article 128411. https://doi.org/10.1016/j.jclepro.2021.128411
    World Health Organization. (2019). Air quality guidelines: Global update 2019. WHO. Retrieved from: https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines
    World Health Organization. (2023). Ambient (outdoor) air pollution. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
    Wu, Y., Zhang, S., Qian, S. E., Cai, M., Li, H., Wang, C., Zou, H., Chen, L., Vaughn, M. G., McMillin, S. E., & Lin, H. (2022). Ambient air pollution associated with incidence and dynamic progression of type 2 diabetes: A trajectory analysis of a population-based cohort. BMC Medicine, 20(1), 375. https://doi.org/10.1186/s12916-022-02573-0
    Wu, C. Y., Liang, L. L., Ho, H. J., Hsu, C. T., Hsu, H. T., Ao, C. K., Wu, C. Y., Lin, Y. H., Chuang, Y. F., Hsu, Y. C., Chen, Y. J., & Ng, S. C. (2023). Physical Fitness and Inflammatory Bowel Disease Risk Among Children and Adoles-cents in Taiwan. JAMA pediatrics, 177(6), 608–616. https://doi.org/10.1001/jamapediatrics.2023.0929
    Xu, X., Nie, S., Ding, H., & Hou, F. F. (2018). Environmental pollution and kidney diseases. Nature reviews. Nephrology, 14(5), 313–324. https://doi.org/10.1038/nrneph.2018.11
    Xu, Z., Hu, X., Tong, S., & Cheng, J. (2020). Heat and risk of acute kidney injury: An hourly-level case-crossover study in Queensland, Australia. Environmental Research, 182, 109058. https://doi.org/10.1016/j.envres.2019.109058
    Yang, C., Wang, W., Wang, Y., et al. (2022). Ambient ozone pollution and preva-lence of chronic kidney disease: A nationwide study based on the China Na-tional Survey of Chronic Kidney Disease. Chemosphere, 306, 135603. https://doi.org/
    Yang, B. Y., Fan, S., Thiering, E., Seissler, J., Nowak, D., Dong, G. H., & Heinrich, J. (2020). Ambient air pollution and diabetes: A systematic review and me-ta-analysis. Environmental research, 180, 108817. https://doi.org/10.1016/j.envres.2019.108817
    Yang, Y.-R., Chen, Y.-M., Chen, S.-Y., & Chan, C.-C. (2017). Associations between long-term particulate matter exposure and adult renal function in the Taipei metropolis. Environmental Health Perspectives, 125(4), 602–607. https://doi.org/10.1289/EHP30
    Ye, J. J., Wang, S. S., Fang, Y., Zhang, X. J., & Hu, C. Y. (2021). Ambient air pol-lution exposure and risk of chronic kidney disease: A systematic review of the literature and meta-analysis. Environmental research, 195, 110867. https://doi.org/10.1016/j.envres.2021.110867
    Zhang, Y., Liu, D., Liu, Z. (2021). Fine Particulate Matter (PM2.5) and Chronic Kidney Disease. In: de Voogt, P. (eds) Reviews of Environmental Contamina-tion and Toxicology Volume 254. Reviews of Environmental Contamination and Toxicology, vol 254. Springer, Cham. https://doi.org/10.1007/398_2020_62
    Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature reviews. Endocrinolo-gy, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151

    無法下載圖示 校內:2027-07-01公開
    校外:2027-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE