簡易檢索 / 詳目顯示

研究生: 李依玲
Li, Yi-Ling
論文名稱: 奈米毛細泵超薄鋁均熱板應用於LED散熱
Ultra-thin aluminum vapor chambers with nano Cu capillary pump loops for LED heat dissipation
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 123
中文關鍵詞: 發光二極體(LED)Cu@C奈米毛細泵超薄均熱板離子熔鹽
外文關鍵詞: LED, Cu@C, capillary pump loops, ultra-thin vapor chambers, ionic liquids
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高效能、高亮度及長壽命之發光二極體(LED)已被廣泛應用,其中約15% 能量可應用於可見光頻譜,但受限於約85% 熱量之導、散熱問題,若無法有效移除,將大幅降低LED的壽命及穩定度。相對於傳統強制對流的散熱方式,利用相轉換之均熱板(vapor chamber)更能有效地提升導、散熱效率。
    利用製程簡易、成本低廉的碳化法(carbonization)合成奈米核殼(Cu@C)材料,並藉由銅碳比值的調整以控制奈米銅顆粒大小,將其負載於超薄均熱板內層表面,透過蒸氣轉化反應(steam reforming) (Cu@C + H2O → Cu + CO + H2) 移除碳環,以構築奈米毛細泵結構。超薄奈米毛細泵均熱板在自製真空腔體中填充工作流體(例如:甲、乙醇混合溶液)及壓合密封。另外,也探討均熱板之工作流體填充量、奈米毛細泵負載量、甲乙醇混合比例、奈米核殼顆粒大小、均熱板材質、與離子熔鹽添加等之導熱係數影響。
    藉由X射線繞射儀、電子顯微鏡、與同步輻射X射線吸收光譜分析,得知奈米核殼材料之粒徑介於8.9~35 nm,且以奈米銅型式存在。此奈米核殼材料也可由回收電鍍或化學機械研磨廢水中的銅離子研製。透過蒸氣轉化反應移除部分碳環,奈米核殼材料仍維持奈米銅之晶相,碳環厚度由3~5 nm減少至1.0~2.2 nm。經由聚焦離子束顯微鏡及接觸角測量儀觀察,顯示負載量為50~300 g之奈米毛細泵厚度皆維持於25 nm,負載量達100 g可有效增加均熱板之潤濕性,使內部工作流體得以快速循環。
    新穎之奈米毛細泵超薄均熱板應用於LED散熱,其結果指出:(1)負載重量為100 g之奈米毛細泵,並且填充80 torr之甲醇蒸氣作為工作流體,可獲得熱擴散率3.65 cm2/sec及熱傳導係數668.1 W/m-K;(2)應用8.9~35 nm粒徑大小之核殼材料構築奈米毛細泵結構,其中粒徑為14 nm,而且填充甲醇蒸氣作為工作流體時,可獲得相對較佳之熱擴散率及熱傳導係數,分別為11.68 cm2/sec及2230 W/m-K,可獲得優於純鋁片9倍以上之散熱效率。

    Recently, the high efficiency, high brightness, environmental friendly, and long lifetime light-emitting diodes (LED) have been widely applied in lighting. However, LEDs which have relatively high energy (15%) used in lighting have suffered problems of heat dissipation, which also lead to decrease their lifetime and stability. Compared with the traditional forced heat convection, the liquid/vapor phase change for vapor chambers is more effective to enhance the heat dissipation.
    The core-shell (Cu@C) nanoparticles can be prepared by a simple method which was developed in our laboratory. The size (Dp) of the Cu@C nanoparticles in the range of 7-40 nm can be selected by simply changing the Cu/C ratio during preparation. A ultra-thin vapor chamber containing nano capillary pump loops (CPLs) can be prepared by removing the carbon-shell of the coated Cu@C with steam reforming (Cu@C + H2O → Cu + CO + H2). Methanol (MeOH) and ethanol (EtOH) were used as the working fluid in the Al vapor chambers. Experimentally, the LED heat dissipation associated with the partial pressures of the working fluid in vapor chambers, structures of the nano Cu CPLs, MeOH/EtOH ratios, Dp of the Cu@C nanoparticles, material of vapor chambers, and the amount of the ionic liquid added were investigated.
    By XRD and TEM, it is clear that the nanostructured Cu encapsulated in carbon-shell has a Dp range of 8.9-35 nm. Note that the thickness of the carbon-shell in the Cu@C was reduced from 3-5 nm to 1.0-2.2 nm during steam reforming, and without a perturbation of the core Cu. The wettability of the vapor chambers is increased in the presence of the nano Cu CPLs coated on the internal surface of the Al vapor chambers, which can accelerate the circulation of working fluid.
    The novel ultra-thin Al vapor chambers with nano Cu CPLs have been applied in the enhanced LED heat dissipation. For instance, for the vapor chamber containing nano Cu CPLs, in the presence of 80 torr of MeOH vapor, have a high thermal diffusivity (3.65 cm2/sec) and thermal spreading conductivity (668.1 W/m-K). The best thermal diffusivity (11.68 cm2/sec) and thermal spreading conductivity (2230 W/m-K) for the Al vapor chamber can be obtained, which greater than the bulky Al by at least nine times. The ionic liquids can play the role of preventing the thermal shock for the ultra-thin Al vapor chambers.

    摘要 I ABSTRACT III 誌謝 V CONTENT VI LIST OF TABLES VIII LIST OF FIGURES X CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE STUDIES 3 2.1 Heat dissipation of CPU/LED 3 2.2 Heat transfer mechanisms 8 2.3 Vapor chambers 12 2.3.1 Nano capillary pump loops 15 2.4 Core-shell nanoparticles 19 2.5 Working fluid 21 2.5.1 Methanol/Ethanol mixtures 22 2.5.2 Ionic liquids 27 2.6 Summary of literature studies 30 CHAPTER 3 EXPERIMENTAL METHODS 31 3.1 Experimental procedures 31 3.2 Preparation of vapor chamber 33 3.2.1 Synthesis of core-shell nanoparticles 33 3.2.2 Construction of nano capillary pump loops 33 3.2.3 Assembly of vapor chambers 33 3.3 Characterization of core-shell nanoparticles 38 3.3.1 X-ray diffraction spectroscopy 38 3.3.2 Transmission electron microscopy 38 3.3.3 Small angle X-ray scattering 39 3.3.4 X-ray absorption spectroscopy 39 3.3.5 Focused ion beam 41 3.3.6 Contact angle 45 3.3.7 Nuclear magnetic resonance 47 3.4 Thermal spreading conductivity measurements of vapor chambers 48 CHAPTER 4 RESULTS AND DISCUSSION 50 4.1 Preparation of nanosize-controllable Cu encapsulated in carbon-shell 50 4.1.1 Enhanced heat dissipation with copper recovered from a CMP wastewater 50 4.2 Construction of nano capillary pump loops with Cu@C nanoparticles 59 4.3 Enhanced heat dissipation of electro-optical devices by ultra-thin Al vapor chambers with nano capillary pump loops 71 4.4 Ultra-thin Al vapor chambers containing nano capillary pump loops 84 4.5 Ionic liquids for LED heat dissipation enhancement 95 CHAPTER 5 CONCLUSIONS 105 REFERENCES 106 APPENDIX A 114 APPENDIX B 120 APPENDIX C 122

    Alofi, A., Srivastava, G.P., 2013. Thermal conductivity of graphene and graphite. Physical Review B 87.
    Bazzo, E., Nogoseke, M., 2003. Capillary pumping systems for solar heating application. Applied Thermal Engineering 23, 1153-1165.
    Boukendil, M., Abdelbaki, A., Zrikem, Z., 2012. Detailed numerical simulation of coupled heat transfer by conduction, natural convection and radiation through double honeycomb walls. Building Simulation 5, 337-344.
    Cairney, J.M., Munroe, P.R., Hoffman, M., 2005. The application of focused ion beam technology to the characterization of coatings. Surface and Coatings Technology 198, 165-168.
    Chang, M.-H., Das, D., Varde, P.V., Pecht, M., 2012. Light emitting diodes reliability review. Microelectronics Reliability 52, 762-782.
    Chen, H., Lu, Y., Gao, Y., Zhang, H., Chen, Z., 2009a. The performance of compact thermal models for LED package. Thermochimica Acta 488, 33-38.
    Chen, H.T., Tao, X.H., Hui, S.Y.R., 2012. Estimation of Optical Power and Heat-Dissipation Coefficient for the Photo-Electro-Thermal Theory for LED Systems. Ieee Transactions on Power Electronics 27, 2176-2183.
    Chen, P.C., Lin, W.K., 2001. The application of capillary pumped loop for cooling of electronic components. Applied Thermal Engineering 21, 1739-1754.
    Chen, T., Xiong, H., Wen, W., Zhang, X., Wang, S., 2013. Electrochemistry of heme proteins entrapped in DNA films in two imidazolium-based room temperature ionic liquids. Bioelectrochemistry 91, 8-14.
    Chen, Y.-S., Chien, K.-H., Hung, T.-C., Wang, C.-C., Ferng, Y.-M., Pei, B.-S., 2009b. Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber. Applied Thermal Engineering 29, 2655-2664.
    Chiu, Y., Huang, C., Chang, F., Kang, H., Wang, H.P., 2011. Recovery of copper from a wastewater for preparation of Cu@ C nanoparticles. Sustainable Environment Research 21, 279-282.
    Choi, J., Jeong, M., Yoo, J., Seo, M., 2012. A new CPU cooler design based on an active cooling heatsink combined with heat pipes. Applied Thermal Engineering.
    Chou, W.L., Wang, C.T., Chang, W.C., Chang, S.Y., 2010. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. Journal of hazardous materials 180, 217-224.
    Chung, D., 2001. Materials for thermal conduction. Applied thermal engineering 21, 1593-1605.
    de Luna, M.D.G., Warmadewanthi, Liu, J.C., 2009. Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 347, 64-68.
    Earle, M.J., Esperanca, J.M., Gilea, M.A., Lopes, J.N., Rebelo, L.P., Magee, J.W., Seddon, K.R., Widegren, J.A., 2006. The distillation and volatility of ionic liquids. Nature 439, 831-834.
    El Fagui, A., Amiel, C., 2012. PLA nanoparticles coated with a beta-cyclodextrin polymer shell: preparation, characterization and release kinetics of a hydrophobic compound. Int J Pharm 436, 644-651.
    Giannuzzi, L., Stevie, F., 1999. A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197-204.
    Goldstein, R.J., Ibele, W.E., Patankar, S.V., Simon, T.W., Kuehn, T.H., Strykowski, P.J., Tamma, K.K., Heberlein, J.V.R., Davidson, J.H., Bischof, J., Kulacki, F.A., Kortshagen, U., Garrick, S., Srinivasan, V., Ghosh, K., Mittal, R., 2010. Heat transfer—A review of 2005 literature. International Journal of Heat and Mass Transfer 53, 4397-4447.
    Hollingsworth, J., Sierra-Alvarez, R., Zhou, M., Ogden, K.L., Field, J.A., 2005. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 59, 1219-1228.
    Hong, C.-I., Kang, H.-Y., Wang, H.P., Lin, W.-K., Jeng, U.S., Su, C.-H., 2011. Cu-ZnO@C nanoreactors studied by in situ synchrotron SAXS spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 184, 301-303.
    Hough, W.L., Rogers, R.D., 2007. Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients. Bulletin of the Chemical Society of Japan 80, 2262-2269.
    Howard, J.A., Walsh, P.A., 2013. An Experimental Investigation of Heat Transfer Enhancement Mechanisms in Microencapsulated Phase-Change Material Slurry Flows. Heat Transfer Engineering 34, 223-234.
    Hsieh, S.-S., Lee, R.-Y., Shyu, J.-C., Chen, S.-W., 2007. Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar. Energy Conversion and Management 48, 2708-2717.
    Hsieh, S.-S., Lee, R.-Y., Shyu, J.-C., Chen, S.-W., 2008. Thermal performance of flat vapor chamber heat spreader. Energy Conversion and Management 49, 1774-1784.
    Huang, C.-H., Wang, H.P., Chang, J.-E., Eyring, E.M., 2009. Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chemical Communications, 4663-4665.
    Huang, H.-L., Wang, H.P., 2005. Speciation of nano-copper collected in molecular sieves from chemical–mechanical planarization wastewater. Journal of Electron Spectroscopy and Related Phenomena 144-147, 307-309.
    Jang, H.-Y., Cheng, C.-H., 2009. Nonlinear optimal on-line heat-dissipation control methodology in electronic devices. International Journal of Heat and Mass Transfer 52, 2049-2058.
    Jeng, U.-S., Su, C.H., Su, C.-J., Liao, K.-F., Chuang, W.-T., Lai, Y.-H., Chang, J.-W., Chen, Y.-J., Huang, Y.-S., Lee, M.-T., 2009. A small/wide-angle X-ray scattering instrument for structural characterization of air-liquid interfaces, thin films and bulk specimens. Journal of Applied Crystallography 43, 110-121.
    Ji, X., Xu, J., Abanda, A.M., 2012. Copper foam based vapor chamber for high heat flux dissipation. Experimental Thermal and Fluid Science 40, 93-102.
    Joung, W., Hwang, H., Lee, J., 2010. Experimental study on the operating characteristics of a capillary pumped loop with a flat evaporator. International Journal of Heat and Mass Transfer 53, 268-275.
    Khoiroh, I., Lee, M.-J., 2013. Isothermal vapour–liquid equilibrium of binary systems containing polyoxyethylene dodecanoate and alcohols. The Journal of Chemical Thermodynamics 56, 99-105.
    Kim, J.-K., Matic, A., Ahn, J.-H., Jacobsson, P., 2010. An imidazolium based ionic liquid electrolyte for lithium batteries. Journal of Power Sources 195, 7639-7643.
    Kim, Y.J., Kim, S., Joshi, Y.K., Fedorov, A.G., Kohl, P.A., 2012. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid. Energy 44, 1005-1016.
    Laus, G., Bentivoglio, G., Schottenberger, H., Kahlenberg, V., Kopacka, H., Röder, T., Sixta, H., 2005. Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte 84, 71-85.
    Li, H.-Y., Chiang, M.-H., 2011. Effects of shield on thermal-fluid performance of vapor chamber heat sink. International Journal of Heat and Mass Transfer 54, 1410-1419.
    Li, H.-Y., Chiang, M.-H., Lee, C.-I., Yang, W.-J., 2010a. Thermal performance of plate-fin vapor chamber heat sinks. International Communications in Heat and Mass Transfer 37, 731-738.
    Li, H., Kang, W., Xi, B., Yan, Y., Bi, H., Zhu, Y., Qian, Y., 2010b. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles. Carbon 48, 464-469.
    Li, J., Malis, T., Dionne, S., 2006. Recent advances in FIB–TEM specimen preparation techniques. Materials Characterization 57, 64-70.
    Li, J., Zou, Y., Cheng, L., 2010c. Experimental study on capillary pumping performance of porous wicks for loop heat pipe. Experimental Thermal and Fluid Science 34, 1403-1408.
    Lin, S.H., Yang, C.R., 2004. Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication. Journal of hazardous materials 108, 103-109.
    Lin, Y.-J., Hwang, K.-S., 2009. Effects of Powder Shape and Processing Parameters on Heat Dissipation of Heat Pipes with Sintered Porous Wicks. Materials Transactions 50, 2427-2434.
    Lin, Z., Wang, S., Huo, J., Hu, Y., Chen, J., Zhang, W., Lee, E., 2011. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Applied Thermal Engineering 31, 2221-2229.
    Linganiso, E.C., Mhlanga, S.D., Coville, N.J., Mwakikunga, B.W., 2013. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique. Journal of Alloys and Compounds 552, 345-350.
    Lips, S., Lefèvre, F., Bonjour, J., 2009. Nucleate boiling in a flat grooved heat pipe. International Journal of Thermal Sciences 48, 1273-1278.
    Lips, S., Lefèvre, F., Bonjour, J., 2011. Physical mechanisms involved in grooved flat heat pipes: Experimental and numerical analyses. International Journal of Thermal Sciences 50, 1243-1252.
    Long, N.V., Duy Hien, T., Asaka, T., Ohtaki, M., Nogami, M., 2011. Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. International Journal of Hydrogen Energy 36, 8478-8491.
    Lu, A.H., Li, W.C., Matoussevitch, N., Spliethoff, B., Bonnemann, H., Schuth, F., 2005. Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chemical Communications, 98-100.
    Lu, L., Lv, L.-C., Liu, Z.-H., 2011. Application of Cu-water and Cu-ethanol nanofluids in a small flat capillary pumped loop. Thermochimica Acta 512, 98-104.
    Marghitu, D.B., 2001. Mechanical engineer's handbook. Academic Pr.
    Mishra, D.K., Saravanan, T.T., Khanra, G.P., Girikumar, S., Sharma, S.C., Sreekumar, K., Sinha, P.P., 2010. Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts. Advanced Powder Technology 21, 658-662.
    Mohammed, H.A., Bhaskaran, G., Shuaib, N.H., Saidur, R., 2011. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renewable and Sustainable Energy Reviews 15, 1502-1512.
    Naphon, P., Klangchart, S., Wongwises, S., 2009. Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU. International Communications in Heat and Mass Transfer 36, 834-840.
    Naphon, P., Wiriyasart, S., 2009. Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU. International Communications in Heat and Mass Transfer 36, 166-171.
    Nield, D.A., Bejan, A., 2006. Convection in porous media. Springer.
    Niu, Y.H., Crooks, R.M., 2003. Preparation of dendrimer-encapsulated metal nanoparticles using organic solvents. Chemistry of Materials 15, 3463-3467.
    Putra, N., Yanuar, Iskandar, F.N., 2011. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Experimental Thermal and Fluid Science 35, 1274-1281.
    Reyntjens, S., Puers, R., 2001. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering 11, 287.
    Shekaari, H., Kazempour, A., 2012. Density and Viscosity in Ternaryd-Xylose + Ionic Liquid (1-Alkyl-3-methylimidazolium Bromide) + Water Solutions at 298.15 K. Journal of Chemical & Engineering Data 57, 3315-3320.
    Siegel, R., 2001. Thermal radiation heat transfer. Taylor & Francis.
    Sun, X.M., Li, Y.D., 2005. Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly. Langmuir 21, 6019-6024.
    Tsai, T.-E., Wu, H.-H., Chang, C.-C., Chen, S.-L., 2010. Two-phase closed thermosyphon vapor-chamber system for electronic cooling. International Communications in Heat and Mass Transfer 37, 484-489.
    Wan, Z.M., Liu, J., Wan, J.H., Tu, Z.K., Liu, W., 2011. An overall numerical investigation on heat and mass transfer for miniature flat plate capillary pumped loop evaporator. Thermochimica Acta 518, 82-88.
    Wang, H., Wang, S., Liao, Z., Zhao, P., Su, W., Niu, R., Chang, J., 2012. Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. International Journal of Pharmaceutics 430, 342-349.
    Wang, J.-C., 2011. Thermal investigations on LED vapor chamber-based plates. International Communications in Heat and Mass Transfer 38, 1206-1212.
    Wang, J.-C., Li, A.-T., Tsai, Y.-P., Hsu, R.-Q., 2011. Analysis for diving regulator applying local heating mechanism of vapor chamber in insert molding process. International Communications in Heat and Mass Transfer 38, 179-183.
    Wang, J.-C., Wang, R.-T., Chang, T.-L., Hwang, D.-S., 2010. Development of 30 Watt high-power LEDs vapor chamber-based plate. International Journal of Heat and Mass Transfer 53, 3990-4001.
    Wang, M., Shan, Z., Tian, J., Yang, K., Liu, X., Liu, H., Zhu, K., 2013a. Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries. Electrochimica Acta 95, 301-307.
    Wang, Y., Su, C.-P., Schulmerich, M., Padua, G.W., 2013b. Characterization of core–shell structures formed by zein. Food Hydrocolloids 30, 487-494.
    Weibel, J.A., Garimella, S.V., 2012. Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks. International Journal of Heat and Mass Transfer 55, 3498-3510.
    Weng, C.-J., 2009. Advanced thermal enhancement and management of LED packages. International Communications in Heat and Mass Transfer 36, 245-248.
    Weng, L., Yan, J.-J., Xie, H.-L., Zhong, G.-Q., Zhu, S.-Q., Zhang, H.-L., Chen, E.-Q., 2013. Design, synthesis, and self-assembly manipulating of polymerized ionic liquids contained imidazolium based on “Jacketing” effect. Journal of Polymer Science Part A: Polymer Chemistry 51, 1912-1923.
    Wong, S.-C., Hsieh, K.-C., Wu, J.-D., Han, W.-L., 2010. A novel vapor chamber and its performance. International Journal of Heat and Mass Transfer 53, 2377-2384.
    Wong, S.-C., Huang, S.-F., Hsieh, K.-C., 2011. Performance tests on a novel vapor chamber. Applied Thermal Engineering 31, 1757-1762.
    Yang, C.-H., Tai, C.-C., Huang, Y.-T., Sun, I.W., 2005. Ionic liquid promoted palladium-catalyzed Suzuki cross-couplings of N-contained heterocyclic chlorides with naphthaleneboronic acids. Tetrahedron 61, 4857-4861.
    Yang, G.C.C., Li, C.J., 2008. Tubular TiO2/Al2O3 composite membranes: preparation, characterization, and performance in electrofiltration of oxide-CMP wastewater. Desalination 234, 354-361.
    Yang, G.C.C., Tsai, C.-M., 2009. Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process: Part 2. Journal of Membrane Science 331, 100-108.
    Yang, Y., Ji, X., Xu, J., 2010. Pool boiling heat transfer on copper foam covers with water as working fluid. International Journal of Thermal Sciences 49, 1227-1237.
    Yung, K.C., Liem, H., Choy, H.S., Lun, W.K., 2010. Thermal performance of high brightness LED array package on PCB. International Communications in Heat and Mass Transfer 37, 1266-1272.
    Zhao, J., Zhang, D., Zhao, J., 2011. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization. Journal of Solid State Chemistry 184, 2339-2344.
    Zhong, C.J., Maye, M.M., 2001. Core-shell assembled nanoparticles as catalysts. Advanced Materials 13.
    Zhu, G.-X., Wei, X.-W., Jiang, S., 2007. A facile route to carbon-coated nickel-based metal nanoparticles. Journal of Materials Chemistry 17, 2301-2306.
    Zisman, W.A., 1964. Relation of the equilibrium contact angle to liquid and solid constitution. Advances in Chemistry Series 43, 51.

    無法下載圖示 校內:2018-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE