簡易檢索 / 詳目顯示

研究生: 簡彰頡
Jian, Jhang-Jie
論文名稱: 多重通道及多重T型閘極氮化鋁鎵/氮化鎵金氧半高電子遷移率場效電晶體之研究
Investigation of Multi-Channel and Multiple T-gate AlGaN/GaN MOS-HEMTs
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 氮化鋁鎵/氮化鎵光電化學法電子束微影技術多重通道結 構多重閘極結構多重T 型閘極結構
外文關鍵詞: AlGaN/GaN, Photoelectrochemical wet oxidation method, electron beam lithography system, Multi-channel and multiple T-gate structure
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由電子束微影製程技術搭配光電化學法完成製作多重通道及多重T型閘極氮化鋁鎵/氮化鎵高電子遷移率場效電晶體,80 nm寬之多重通道結構利用電子束微影系統曝寫圖形與光電化學濕式蝕刻法蝕刻而形成;另一方面,在多重T型閘極的部份,同樣以電子束微影系統曝寫多重T閘極圖形之底部(線寬為80 nm),再利用黃光微影定義閘極區域及後續製程,完成多重T型閘極結構。
    本研究比較光電化學法生長、氧化鋁及二氧化矽之閘極氧化層於不同結構下的特性,其結構分為平面式單閘極、多重通道結構、多重通道及多重閘極結構與多重通道及多重T型閘極結構。光電化學法生長、氧化鋁及二氧化矽之閘極氧化層於平面式單閘極結構下,汲源極電壓(VDS)為10 V和閘源極電壓(VGS)為5 V下,汲源極飽和電流(IDSS)分別為490 mA/mm、480 mA/mm及475 mA/mm,在汲源極電壓為10 V時,最大轉移電導值(gm(max))分別為90 mS/mm、88 mS/mm及80 mS/mm,次臨界擺幅(subthreshold swing, S.S.)分別為368.3 mV/dec、374.6 mV/dec及390.1 mV/dec。
    進一步比較光電化學法生長、氧化鋁及二氧化矽之閘極氧化層於多重通道結構下,汲源極電壓(VDS)分別操作於3 V、3.5 V及4 V且閘源極電壓(VGS)為5 V下,汲源極飽和電流(IDSS)分別為1153 mA/mm、1131 mA/mm及929 mA/mm,最大轉移電導值(gm(max))分別為265 mS/mm、240 mS/mm及223 mS/mm,次臨界擺幅(subthreshold swing, S.S.)下降至100.1 mV/dec、105.3 mV/dec及118.1 mV/dec,截止頻率(cut-off frequency, fT)分別為7.7 GHz、7.4 GHz及6.9 GHz,而最大震盪頻率(maximum oscil-lation frequency, fMax)分別為15.1 GHz、14.2 GHz及13.7 GHz。
    再進一步比較光電化學法生長、氧化鋁及二氧化矽之閘極氧化層於多重通道及多重閘極結構下,汲源極電壓(VDS)分別操作於3 V、3 V及4 V且閘源極電壓(VGS)為5 V,汲源極飽和電流(IDSS)分別為1958 mA/mm、1949 mA/mm及1795 mA/mm,最大轉移電導值(gm(max))分別為323 mS/mm、321.5 mS/mm及309 mS/mm,次臨界擺幅(subthreshold swing, S.S.)下降至95.5 mV/dec、98.8 mV/dec及107.1 mV/dec,截止頻率(cut-off frequency, fT)分別為12 GHz、10.8 GHz及8.9 GHz,而最大震盪頻率(maximum oscillation frequency, fMax)分別為18.6 GHz、16.9 GHz及15.8 GHz。
    最後將多重閘極改為T型閘極結構,通道的部份維持多重通道結構,閘極氧化層為光電化學法生長、氧化鋁及二氧化矽之氧化層進行比較,汲源極電壓(VDS)分別操作於3 V、3 V及3.5 V且閘源極電壓(VGS)為5 V,汲源極飽和電流(IDSS)分別為2009 mA/mm、1996 mA/mm及1821 mA/mm,最大轉移電導值(gm(max))分別為340 mS/mm、333 mS/mm及318 mS/mm,次臨界擺幅(subthreshold swing, S.S.)下降至98.5 mV/dec、86.2 mV/dec及82.2 mV/dec,截止頻率(cut-off frequency, fT)分別為12.8 GHz、11.6 GHz及10.7 GHz,而最大震盪頻率(maximum oscillation frequency, fMax)分別為30.9 GHz、30.2 GHz及29 GHz,當使用光電化學氧化法生長閘極氧化層的同時,也有效形成閘極掘入結構,此結構能夠縮減二維電子氣通道與閘極間之距離,能夠更有效地控制二維電子氣密度,將進一步提升閘極控制力,並使漏電流減少,加快元件切換速度。

    In this research, multi-channel and multiple T-gate structured AlGaN/GaN metal- oxide-semiconductor high-electron-mobility transistors were fabricated by using electron beam lithography system and photoelectrochemical method. The electron beam lithography system could fabricate thinner nanowire than the conventional exposure machine.
    It is worth mentioning that we used photoelectrochemical wet oxidation method to grow high quality gate oxide on the AlGaN surface directly, it also could avoid AlGaN surface damage by plasma. The multiple T-gate structure was fabricated by using electron beam lithography system and combining Photolithography system. Combine the above structures and advantages, we successfully fabricated the multi-channel and multiple T-gate structured metal-oxide-semiconductor high-electron-mobility transistors with different gate oxide layers. Multi-channel structure could increase the area between gate and channel to enhance the gate control capability, and T-gate structure could reduce the gate resistance and improve the high frequency characteristics.
    The saturation drain–source currents (IDSS) at VDS = 3 V and VGS = 5 V of the multi-channel and multiple T-gate structured MOS-HEMTs were 2009 mA/mm, the maximum transconductance (gm (max)) were 340 mS/mm, the cut-off frequency and the maximum oscillation frequency were 12.8 GHz and 30.9 GHz, respectively.

    摘要 I Abstract IV 致謝 XXVII 目錄 XXVIII 表目錄 XXXII 圖目錄 XXXIII 簡介 1 氮化鋁鎵/氮化鎵高速電子遷移率電晶體 1 研究動機 2 論文架構 3 參考文獻 6 原理與文獻回顧 9 氮化鋁鎵/氮化鎵異質結構 9 氮化鋁鎵/氮化鎵異質結構之成長 9 二維電子氣之特性 10 氮化鋁鎵蝕刻原理 10 光電化學蝕刻/氧化法 10 金氧半高速電子遷移率電晶體之特性 12 金氧半高速電子遷移率電晶體 12 奈米多重通道結構之介紹 13 多重T型閘極結構介紹 14 高頻量測之S參數 14 電流增益截止頻率 16 最大震盪頻率 17 崩潰電壓 18 低頻雜訊 18 參考文獻 25 元件製程及量測儀器 29 試片結構 29 元件製作流程 29 多重通道結構製作 29 高台隔離目的與製作 31 表面硫化處理 33 歐姆接觸電極製作 33 閘極氧化層製作 35 多重T閘極結構製作 36 製程及量測儀器 38 3.3.1 電子束機台操作及原理 38 3.3.2 穿透式電子顯微鏡 38 3.3.3 DC電流-電壓量測系統 39 3.3.4 電子束控制蒸鍍系統 40 3.3.5 高頻量測系統 40 3.3.6 原子層沉積系統 41 3.3.7 功率元件量測系統 41 參考文獻 49 實驗結果與討論 51 平面式單閘極之高電子遷移率場效電晶體 51 平面式單閘極結構之直流特性量測 51 平面式單閘極結構之閘極漏電流及崩潰電壓量測 52 平面式單閘極結構之高頻特性量測 53 4.1.4 平面式單閘極結構之低頻雜訊量測 53 多重通道之高電子遷移率場效電晶體 54 80 nm多重通道結構之直流特性量測 54 80 nm多重通道結構之閘極漏電流及崩潰電壓量測 55 80 nm多重通道結構之高頻特性量測 55 80 nm多重通道結構之低頻雜訊量測 56 多重通道及多重閘極之高電子遷移率場效電晶體 56 80 nm多重通道及多重閘極結構之直流特性量測 57 80 nm多重通道及多重閘極結構之閘極漏電流及崩潰電壓量測 58 80 nm多重通道及多重閘極結構之高頻特性量測 59 80 nm多重通道及多重閘極結構之低頻雜訊量測 59 多重通道及多重T型閘極結構之高電子遷移率場效電晶體 60 80 nm多重通道多重T型閘極結構之直流特性量測 60 80 nm多重通道及多重T型閘極結構之閘極漏電流及崩潰電壓量測 61 80 nm多重通道及多重T型閘極結構之高頻特性量測 62 80 nm多重通道及多重T型閘極結構之低頻雜訊量測 62 平面式單閘極、多重通道(80 nm)、多重通道及多重閘極(80 nm)與多重通道及多重T型閘極(80 nm)結構之高頻參數 63 參考文獻 99 結論 101 表目錄 表1-1 材料性質比較 4 表2-1 氧化層沉積方法比較 20 表3-1 各種常見金屬之功函數 42 表4-1 光電化學法製作條件 65 表4-2 氧化鋁與二氧化矽氧化層製作條件 65 表4-3各閘極氧化層之平面式單閘極結構特性比較 65 表4-4各閘極氧化層之多重通道結構特性比較 66 表4-5各閘極氧化層之多重通道及多重閘極結構特性比較 66 表4-6各閘極氧化層之多重通道及多重T型閘極結構特性比較 67 表4-7各元件結構之高頻參數比較 68 圖目錄 圖1.1 異質AlGaN/GaN高速電子遷移率電晶體磊晶結構與能帶圖 5 圖2.1 氮化鋁鎵/氮化鎵異質結構極化方向及二維電子氣位置示意圖 21 圖2.2 氮化鋁鎵/氮化鎵異質結構之能帶結構示意圖 21 圖3.1 試片結構圖 43 圖3.2光罩圖形分為(a)高台隔離、(b)歐姆接觸、(c) 閘極區域與(d) 多重閘極圖 43 圖3.3 (a)~(l)為多重通道及多重T型閘極結構金氧半高電子遷移率場效電晶體之製作流程 47 圖3.4金半接面之電流-電壓特性(a)蕭特基接觸及(b)歐姆接觸 47 圖3.5光電化學法架構系統 48 圖4.1 光電化學法生長之閘極氧化層之平面式單閘極結構電晶體之IDS-VDS輸出特性曲線圖 68 圖4.2 氧化鋁之閘極氧化層之平面式單閘極結構電晶體之IDS-VDS輸出特性曲線圖 69 圖4.3 二氧化矽之閘極氧化層之平面式單閘極結構電晶體之IDS-VDS特性曲線圖 69 圖4.4 光電化學法生長之閘極氧化層之平面式單閘極結構結構電晶體之IDS-VGS特性曲線圖 70 圖4.5 氧化鋁之閘極氧化層之平面式單閘極結構電晶體之IDS-VGS特性曲線圖 70 圖4.6 二氧化矽之閘極氧化層之平面式單閘極結構電晶體之IDS-VGS特性曲線圖 71 圖4.7 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之平面式單閘極結構電晶體之次臨界特性曲線圖 71 圖4.8 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之平面式單閘極結構結構電晶體之IGS-VGS特性曲線圖 72 圖4.9 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之平面式單閘極結構電晶體之崩潰電壓特性曲線圖 72 圖4.10 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之平面式單閘極結構電晶體之高頻特性圖 73 圖4.11 光電化學法生長之閘極氧化層之平面式單閘極結構電晶體之低頻雜訊特性圖 73 圖4.12 氧化鋁之閘極氧化層之平面式單閘極結構電晶體之低頻雜訊特性圖 74 圖4.13 二氧化矽之閘極氧化層之平面式單閘極結構電晶體之低頻雜訊特性圖 74 圖4.14 光電化學法生長之閘極氧化層之多重通道結構電晶體之IDS-VDS輸出特性曲線圖 75 圖4.15 氧化鋁之閘極氧化層之多重通道結構電晶體之IDS-VDS輸出特性曲線圖 75 圖4.16 二氧化矽之閘極氧化層之多重通道結構電晶體之IDS-VDS輸出特性曲線圖 76 圖4.17 光電化學法生長之閘極氧化層之多重通道結構電晶體之IDS-VGS輸出特性曲線圖 76 圖4.18 氧化鋁之閘極氧化層之多重通道結構電晶體之IDS-VGS輸出特性曲線圖 77 圖4.19 二氧化矽之閘極氧化層之多重通道結構電晶體之IDS-VGS輸出特性曲線圖 77 圖4.20 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道結構電晶體之次臨界特性曲線圖 78 圖4.21 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道結構電晶體之IGS-VGS特性曲線圖 78 圖4.22 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道結構電晶體之崩潰電壓特性曲線圖 79 圖4.23 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道結構電晶體之高頻特性圖 79 圖4.24 光電化學法生長之閘極氧化層之多重通道結構電晶體之低頻雜訊特性圖 80 圖4.25 氧化鋁之閘極氧化層之多重通道結構電晶體之低頻雜訊特性圖 80 圖4.26 二氧化矽之閘極氧化層之多重通道結構電晶體之低頻雜訊特性圖 81 圖4.27 光電化學法生之閘極氧化層之多重通道及多重閘極結構電晶體之IDS-VDS輸出特性曲線圖 81 圖4.28 氧化鋁之閘極氧化層之多重通道及多重閘極結構電晶體之IDS-VDS輸出特性曲線圖 82 圖4.29 二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之IDS-VDS輸出特性曲線圖 82 圖4.30 光電化學法生長之閘極氧化層之多重通道及多重閘極結構電晶體之IDS-VGS輸出特性曲線圖 83 圖4.31 氧化鋁之閘極氧化層之多重通道及多重閘極結構電晶體之IDS-VGS輸出特性曲線圖 83 圖4.32 二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之IDS-VGS輸出特性曲線圖 84 圖4.33 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之次臨界特性曲線圖 84 圖4.34 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之IGS-VGS特性曲線圖 85 圖4.35 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之崩潰電壓特性曲線圖 85 圖4.36 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之高頻特性圖 86 圖4.37 光電化學法生長之閘極氧化層之多重通道及多重閘極結構電晶體之低頻雜訊特性圖 86 圖4.38 氧化鋁之閘極氧化層之多重通道及多重閘極結構電晶體之低頻雜訊特性圖 87 圖4.39 二氧化矽之閘極氧化層之多重通道及多重閘極結構電晶體之低頻雜訊特性圖 87 圖4.40 光電化學法生之閘極氧化層之多重通道及多重T型閘極結構電晶體之IDS-VDS輸出特性曲線圖 88 圖4.41 氧化鋁之閘極氧化層之多重通道及多重T型閘極結構電晶體之IDS-VDS輸出特性曲線圖 88 圖4.42 二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之IDS-VDS輸出特性曲線圖 89 圖4.43 光電化學法生長之閘極氧化層之多重通道及多重T型閘極結構電晶體之IDS-VGS輸出特性曲線圖 89 圖4.44 氧化鋁之閘極氧化層之多重通道及多重T型閘極結構電晶體之IDS-VGS輸出特性曲線圖 90 圖4.45 二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之IDS-VGS輸出特性曲線圖 90 圖4.46 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之次臨界特性曲線圖 91 圖4.47 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之IGS-VGS特性曲線圖 91 圖4.48 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之崩潰電壓特性曲線圖 92 圖4.49 光電化學法生長、氧化鋁與二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之高頻特性圖 92 圖4.50 光電化學法生長之閘極氧化層之多重通道及多重T型閘極結構電晶體之低頻雜訊特性圖 93 圖4.51 氧化鋁之閘極氧化層之多重通道及多重T型閘極結構電晶體之低頻雜訊特性圖 93 圖4.52 二氧化矽之閘極氧化層之多重通道及多重T型閘極結構電晶體之低頻雜訊特性圖 94 圖4. 53光電化學法生長之氧化層之多重通道結構掃描穿透式電子顯微鏡之(a)通道間距(spacing)剖面圖、(b)通道剖面圖 95 圖4. 54光電化學法生長之氧化層之多重閘極結構掃描穿透式電子顯微鏡之(a)閘極間距(spacing)剖面圖、(b)閘極剖面圖 96 圖4. 55光電化學法生長之氧化層之多重T型閘極結構掃描穿透式電子顯微鏡之(a)多重T型閘極剖面圖、(b)光電化學法生長之氧化層之T型閘極剖面圖、(c)氧化鋁之氧化層之T型閘極剖面圖及(d)二氧化矽之氧化層之T型閘極剖面圖 98

    第一章
    [1] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Elec-tron Devices, vol. 41, pp. 1481-1483, 1994.
    [2] M. A. Khan, J. M. Van Hove, J. N. Kuznia and D. T. Olson, “High electron mobility GaN/AlxGa1-xN hetrostructures grown by low-pressure etalorganic chemical vapor deposition,” Applied Physics Letters, vol. 58, pp. 2408-2410, 1991.
    [3] Y. Xia, J. S. Hung, W. Tang and D. Wu, “Quantum Brain Storm Op-timization of GaN Power Amplifier Design,” International conference on computer science and application engineering, pp.389-395, 2017.
    [4] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang and M.Blasingame, “En-hancement and depletion mode GaN/AlGaN heterostructure field ef-fect transistors,” Appl. Phys. Lett., vol. 68, pp. 514-516, 1996.
    [5] E. A. Douglas, S. Reza, C. Sanchez, D. Koleske, A. Allerman, B. Klein, A. M. Armstrong, R. J. Kaplar and A. G. Baca, “Ohmic contacts to Al-rich AlGaN heterostructures,” Phys. Status Solidi A, no. 1600842, pp. 1600842-1-1600842-7, 2017.
    [6] C. Jiang, T. Liu, C. Du, X. Huang, M. Liu, Z. Zhao, L. Li, X. Pu, J. Zhai, W. Hu and Z. L. Wang, “Piezotronic effect tuned AlGaN/GaN high electron mobility transistor,” Nanotechnology, vol. 28, no. 455203, pp.455203-1-455203-8, 2017.
    [7] T. Liu, C. Jiang, X. Huang, C. Du, Z. Zhao, L. Jing, X. Li, S. Han, J. Sun, X. Pu, J. Zhai and W. Hua, “Electrical transportation and piezo-tronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassiv-ated HEMTs,” Nano Energy, vol. 39, pp. 53–59, 2017.
    [8] A. Siddique, R. Ahmed, J. Anderson and E. L. Piner, “Effect of reac-tant gas stoichiometry of in-situ SiNx passivation on structural prop-erties of MOCVD AlGaN/GaN HEMTs,” J. Cryst. Growth, vol. 517, pp. 28-34, 2019.
    [9] Madhulika, H. Pandey, M. Garg, N. Jain, S. Kumar, A. Malik, D. S. Rawal, M. Mishra and A. K. Singh, “Modelling DC, RF and noise be-havior of AlGaN/GaN HEMT on SiC Substrate,” The Physics of Sem-iconductor Devices, Springer Proceedings in Physics, vol. 215, pp. 165-170, 2019.
    [10] X. Wang, R. Yu, C. Jiang, W. Hu, W. Wu, Y. Ding, W. Peng, S. Li and Z. L. Wang, “Piezotronic effect modulated heterojuction electron gas in AlGaN/AlN/GaN heterostructure microwire,” IEEE Trans. Electron Devices, vol. 65, no. 3, pp. 901-907, 2018.
    [11] X. Wang, W. Peng, C. Pan and Z. L. Wang, “Piezotronics and pie-zo-phototronics basedona-axis nano/microwires: fundamentalsand application,” Semicond. Sci. Technol., vol. 32, no. 4, 2017.
    [12] Kladko, A. Kuchuk, А. Naumov, N. Safriuk, O. Kolomys, S. Kryvyi, H. Stanchu, A. Belyaev, V. Strelchuk, B. Yavich, Yu. I. Mazur, M. E. Ware and G. J. Salamo, “Effect of strain-polarizationfields on optical transitions in AlGaN/GaN multi-quantum well structures,” Physica E, vol. 76, pp.140-145, 2016.
    [13] M. Matys, K. Nishiguchi, B. Adamowicz, J. Kuzmik and T. Hashizume, “Enhancement of channel electric field in AlGaN/GaN multi-nanochannel high electron mobility transistors,” J. Appl. Phys., vol. 124, pp. 224502-1-224502-8, 2018.
    [14] K. D. Chabak, N. Moser, A. J. Green, D. E. Walker, Jr., S. E. Tetlak, E. Heller, A. Crespo, R. Fitch, J. P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li and G. Jessen, “Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage,” Appl. Phys. Lett., vol. 109, pp. 213501-1-213501-5, 2016.
    [15] Y. W. Jo, D. H. Son, C. H. Won, V. Sindhuri, J. H. Kim, J. H. Seo, I. M. Kang and J. H. Lee, “Control of transconductance in high performance AlGaN/GaN FinFETs,” IEEE Peds, pp. 684-686, 2015.
    第二章
    [1] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gasinduced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [2] F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of Al-GaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Elec-tron Devices, vol. 48, pp. 450-457, 2001.
    [3] T. J. Baker, B. A. Haskell, F. Wu, J. S. Speck and S. Nakamura, “Characterization of Planar Semipolar Gallium Nitride Films on Sap-phire Substrates,” Jpn. J. Appl. Phys., vol. 45, no. 6, pp. L154-L157, 2006.
    [4] L. Chen, X. Ma, J. Zhu, B. Hou, F. Song, Q. Zhu, M. Zhang, L. Yang and Y. Hao, “Polarization Engineering in PZT/AlGaN/GaN High-Electron-Mobility Transistors,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3149-3155, 2018.
    [5] S. Heikman, S. Keller, D. S. Green, S. P. DenBaar and U. K. Mishra, “High conductivity modulation doped AlGaN/GaN multiple channel heterostructures,” J. Appl. Phys., vol. 94, no. 8, pp. 5321-5325, 2003.
    [6] S. Rajan, H. Xing, S. DenBaars and K. Mishra, “AlGaN/GaN polari-zation-doped field-effect transistor for microwavepower applications,” Appl. Phys. Lett., vol. 84, no. 9, pp. 1591-1593, 2004.
    [7] E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer,” Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
    [8] C. T. Lee and Y. S. Chiu, “Gate-Recessed AlGaN/GaN ISFET Urea Biosensor Fabricated by Photoelectrochemical Method,” IEEE Sens. J., vol. 16, no. 6, pp. 1518-1523, 2016.
    [9] M. L. Lee, J. K. Sheu and S. W. Lin, “Schottky barrier heights of metal contacts ton-type gallium nitridewith low-temperature-grown cap layer,” Appl. Phys. Lett., vol. 88, pp. 0321103-1-0321103-3, 2016.
    [10] F. Yamaki, H. Deguchi, N. UI, K. Ebihara, H. Haematsc, M. Nishi, A.Nitta, K. Inoue and S. Sano, “Development of High Reliability GaN HEMT for Cellular Base Stations,” Sei Technical Review, no. 76, 2013.
    [11] X. Huang, R. Fang, C. Yang, K. Fu, H. Fu, H. Chen, T. H. Yang, J. Zhou, J. Montes, M. Kozicki, “Steep-slope field-effect transistors with AlGaN/GaN HEMT and oxide-based threshold switching device,” Nanotechnology, vol. 30, pp. 215201-1-215201-7, 2019.
    [12] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current Sta-bility in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Elec-tron Devices, vol. 60, pp. 2997-3004, 2013.
    [13] T. Palacios, Y. Dora, A. Chakraborty, C. Sanabria, S. Keller, S. P. DenBaars and U. K. Mishra, “Optimization of AlGaN/GaN HEMTs for high frequency operation,” phys. Stat. sol., vol. 203, no. 7, pp. 1845-1850, 2006.
    [14] J. H. Lee, H. S. Yoon, C. S. Park, and H. M. Park, “Ultra low noise characteristics of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with wide head T-shaped gate,” IEEE Trans. Electron Devices, vol. 16, pp. 271-273, 1995.
    [15] J. W. Chung, T. W. Kim and T. Palacios, “Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs,” IEDM Tech. Dig., vol. 10, pp. 676-679, 2010.
    [16] E. Y. Chang, C. I. Kuo, H. T. Hsu, C. Y. Chiang and Y. Miyamoto, “InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave ap-plications,” J. Appl. Phys., vol. 6, pp. 034001-1-034001-3, 2013.
    [17] S. J. Yeon, M. Park, J. Choi and K. Seo, “610 GHz InAlAs/In0.75GaAs metamorphic HEMTs with an ultra-short 15-nm-gate,” IEDM Tech. Dig., vol. 07, pp 613-616, 2007.
    [18] Z. M. Wang , L. Xin; Z. F. Hu, X. B. Luo; Y. X. Cui; X. G. Sun; J. H. Mo and X. C. Fu, ”Realization of 70-nm T-gate InP-based PHEMT for MMW low noise applications,” IEICE Electron. Express, vol. 12, issue. 3, 2015.
    [19] V. Passi and J. P. Raskin, “Review on analog/radio frequency perfor-mance of advanced silicon MOSFETs,” Semiconductor Science and Technology, vol. 32, issue. 12, 2017
    [20] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain and G. Borghs, “Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si substrate,” IEEE Electron Device Lett., vol. 31, pp. 111-113, 2010.
    [21] C. T. Lee, L. H. Huang, and Y. L. Chiou, “Flicker Noises of Al-GaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Tran-sistors”, J. Electrochemical Sci., vol. 157, pp. H734-H738, 2010.
    [22] A. Alfredo and C. Galup-Montoro, “A compact model for flicker noise in MOS transistors for analog circuit design,” IEEE Trans. Electron Devices, vol. 50, pp. 1815-1818, 2003.
    [23] F. C. Hou, G. Bosman, and E. L. Mark, “Simulation of oxide trapping noise in submicron n-channel MOSFETs,” IEEE Trans. Electron De-vices, vol. 50, pp. 846-852, 2003.
    [24] S. L. Rumyantsev, N. Pala, M. E. Levinshtein, A. Asifkhan, G. Simin, and J. Yang, “Low frequency noise in GaN/AlGaN heterostructure field effect transistors in non-ohmic region,” J. Appl. Phys., vol. 93, pp. 10030-10034, 2003.
    第三章
    [1] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen and H. Morkoc, “Reactive ion etching of GaN using BCl3,” Appl. Phys. Lett., vol. 64, no. 7, pp. 887-888, 1994.
    [2] H. S. Kim and G. Y. Yeom, “Characteristics of inductively coupled Cl2/BCl3plasmasduring GaN etching,” J. Vac. Sci. Technol. A, vol. 17, no. 4, pp. 2214-2219, 1999.
    [3] C. T. Lee, Y. J. Lin and C. H. Lin, “Nanalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers,” J. Appl. Phys., vol. 92, pp. 3825-3829, 2002.
    [4] D. R. Greenberg and J. A. Alamo, “Nonlinear source and drain re-sistance in recessed-gate heterostructure Field-Effect Transistor,” IEEE Trans. Electron Devices, vol. 43, no. 8, pp. 1304-1306, 1996.
    [5] Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 71, pp. 1658-1660, 1997.
    [6] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., vol. 64, pp. 1003-1005, 1994.
    [7] Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical Function in Gate-Recessed AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors”, IEEE Electron Device Lett., vol. 31, pp. 183-185, 2010.
    [8] Y. L. Chiou and C. T. Lee, “Band alignment and performance im-provement mechanisms of chlorine-treated ZnO-Gate AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors,” IEEE Trans. Electron Devices, vol. 58, pp 3869-3876, 2011.
    [9] 楊穎枚, “ELS-7500 EX 電子束微影系統SOP,” 國立成功大學 微奈米科技研究中心, 2011.
    第四章
    [1] C. T. Lee and H. Y. Juo, “Multiple-submicron channel array gate-recessed AlGaN/GaN Fin-MOSHEMTs,” IEEE J. Electron De-vices Soc., vol. 6, pp. 183-188, 2018.
    [2] A. Terano, H. Imadate and K. Shiojima, “Mapping etching induced damages on GaN surfaces using scanning internalphotoemission mi-croscopy,” Mater. Sci. Res. Int., vol. 70, pp. 92-98, 2017.
    [3] J. W. Chung, T. W. Kim, and T. Palacios, “Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs”, IEDM Tech. Dig., vol. 10, pp. 676-679, 2010.
    [4] R. Wang, P. Saunier and Senior Member, “Gate-Recessed Enhance-ment-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1383-1385, 2010.
    [5] Y. Yamashita, A. Endoh, K. Shinohara, M. Higashiwaki, K. Hikosaka, T.Mimura, S. Hiyamizu, and T. Matsui, “Ultra-short 25-nm-gate lat-tice-matched InAlAs/InGaAs HEMTs within the range of 400 GHz cutoff frequency”, IEEE Electron Device Lett., vol. 22, pp. 367-369, 2001.
    [6] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, “Al-GaN/GaN HEMT with 300-GHz fmax”, IEEE Electron Device Lett., vol. 31, pp. 195-197, 2010.
    [7] S. Vodapally, C. G. Theodorou, Y. Bae, G. Ghibaudo, S. Cristoloveanu, K. S. Im, and J. H. Lee, “Comparison for 1/f noise characteristics of AlGaN/GaN FinFET and planar MISHFET,” IEEE Trans. Electron Devices, vol. 64, pp. 3634-3638, 2017.
    [8] J. Shao, J. Deng, W. Lu and Y. Chen, “Nanofabrication of 80 nm asymmetric T shape gates for GaN HEMTs,” Microelectron. Eng., vol. 189, pp. 6-10, 2018.
    [9] C. T. Lee, W. S. Chen and H. Y. Lee, “Quadruple Gate-Embedded T Structured GaN-Based Metal–Oxide–Semiconductor High-Electron Mobility Transistors,” IEEE J. Electron Devices Soc., vol. 6, pp. 63-67, 2018.
    [10] Y. K. Lin, S. Noda, H. C. Lo, S. C. Liu, C. H. Wu, Y. Y. Wong, Q. H. Luc, P. C. Chang, H. T. Hsu and Senior Member, “AlGaN/GaN HEMTs With Damage-Free Neutral Beam Etched Gate Recess for High-Performance Millimeter-Wave Applications,” IEEE Electron Device Lett., vol, 37, no. 11, 2016.
    [11] J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid-State Electronics. vol. 52, pp. 115-120, 2008.
    [12] M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE T. Microwave Theory and Techniques, vol. 38, pp. 891-895, 1990.

    下載圖示 校內:2024-09-03公開
    校外:2024-10-01公開
    QR CODE