簡易檢索 / 詳目顯示

研究生: 邱顯傑
Ciou, Sian-Jie
論文名稱: 釔安定氧化鋯電泳沉積機制及動力學之研究
Investigation on the Mechanism and kinetics of Electrophoretic Deposition in Yttria-Stabilized Zirconia Colloidal
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 130
中文關鍵詞: 電泳沉積類神經網路
外文關鍵詞: artificial neural network, electrophoretic deposition
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電泳沉積法,乃一深具實用潛力之陶瓷製程。但仍有許多未明之處,有待各方鑽研投入。本研究對於電泳過程中,膠體粒子在電極表面堆積之機制,以及電泳沉積之動力學進行探討。
    對於在直流電壓下,探討電泳沉積行為之機制,可歸因於在電極及沉積粒子表面,形成之電滲透流,進而引發粒子叢聚行為。此外,膠體粒子表面電雙層間的交互作用力,對粒子間的互相吸引,也具有決定性之影響。而上述論點,對於電泳過程中,皆有可能造成膠體粒子不同的堆積型態,在本研究中,分別利用數值模擬及電化學分析來進行驗證。
    對於電泳沉積動力學,本研究嘗試利用類神經網路,建立電泳沉積之動力學模型。並利用一以知傳統動力學方程式來進行比較。經由比較,本研究所提出的類神經網路動力學模型,除了對動力學行為預測精準之外,還可避免許多繁雜的計算,也更具有實際應用之潛力。

    Charged particles deposited near an electrode aggregate to form different microstructure during electrophoretically depositing. This colloidal technology can be applied in areas such as coating technologies and ceramics processing. This thesis tried to explore the mechanism of electrophoretic deposition and the factor affecting this phenomenon.
    Here a modified electroosmotic-flow model was proposed, the electroosmotic flow under dc field caused aggregation of colloidal particles and subsequent deposition. Furthermore, the electrical double layer also contributed to the aggregation, and varied with different applied voltages. Those hypotheses have been proven by the electrochemical analysis and numerical simulation.
    As for the kinetics of electrophoretic deposition, two different methods were proposed to describe the behaviors of particle deposition. The well-know kinetic function was modified about the variation of voltage. The other, the artificial neural network model, was proposed to learn the kinetic behavior of electrophoretic deposition. After comparing those two model, the artificial neural network model not only avoided much complex calculation by artificial intelligence, but also was practicable and accurate.

    Chapter 1 Introduction ………………………………………………...…1 1.1 Preliminaries of electrophoretic deposition…………………………1 1.2 Application of artificial neural network in EPD kinetic model………7 Chapter 2 Theoretical background………………………………………10 2.1 Electrophoretic deposition models……………………………………..12 2.2 Electrokinetic phenomena………………………………………..……14 2.2.1. The electrical double layer…...........................………………14 2.2.2. Electroosmotic Flow near a Charged Surface.…………………15 2.2.3. Electrophoresis of a Colloidal Particle in an Unbounded Fluid...................................................................................................18 2.3 The Electroosmotic-Flow Model for Particle Aggregation ………19 2.4 The mathematical description to the kinetics of EPD………………24 2.5 Brief Introduction to artificial neural network……………………26 Chapter 3 Experimental methods………………………………………37 3.1 Overview of the Experiments…………………………………….…37 3.2 preparation of LSM substrate………………………………………37 3.3 Suspension for EPD…………………………………………………39 3.4 Electrochemical analysis……………………………………………41 3.4.1 Electrochemical cell design…………………………………41 3.4.2 Current and potential measurements and control.....................42 3.5 The EPD experiment………………………………………………43 3.5.1 The apparatus and geometry of EPD…………………………43 3.5.2 The EPD process…………………………………………..…45 3.6 Estimation of ANN model for EPD…………………………………45 3.6.1 Data processing…………………………………………………...47 3.6.2 The training process………………………………………….47 Chapter 4 The extended electroosmotic-flow model for particle aggregation48 4.1 Governing equation for extended eletroosmotic-flow model...48 4.2 Boundary conditions and initial conditions…………………51 4.3 Results of simulation ………………………………………56 4.4 Brief summaries………………………………………………64 Chapter 5 Characteristics of suspension and the electrode…………………65 5.1 Zeta potential and size distribution of colloidal particle………………65 5.2 The amount of adsorbed proton on YSZ……………………………….69 5.3 Surface interaction potentials……………………………………………71 5.4 Cyclic voltammetry experiments…………………………………………..77 5.5 Potential sweep for Tafel plot of LSM electrode…………………...……81 Chapter 6 Proton electrophoresis in deposit during EPD…......…………..…85 6.1 EPD at constant current 6.1.1 Experimental results………………………………………….......85 6.1.2 Simulation for proton distribution during EPD…...........................87 6.1.3 Results and discussions………………………………………….92 6.1.4 Summarization…………………………………………………..92 6.2 EPD at constant current………………………………………..………94 6.2.1 Experimental results…………………………………………...…94 6.2.2 Simulation for proton distribution during EPD…………………96 6.2.3 Results and discussions………………………………………….100 6.2.4 Summarization…………………………………………………..100 Chapter 7 Kinetics of EPD at constant voltage……………………………101 7.1 Theoretical EPD kinetic model……………………………………101 7.1.1 Modified theoretical EPD kinetic model………………………101 7.1.2 Simulation for colloidal particle concentration profile………110 7.2 ANN kinetics for EPD………………………………………………….117 7.3 Summarization………………………………………………………….121 Chapter 8 Conclusion……...……...………………………………………123

    Anné, G.; Neirinck, B.; Vanmeensel, K., Van der Biest, O.; Vleugels, J.; “Origin of the Potential Drop Over the Deposit During Electrophoretic Deposition” Journal of the American ceramic society., 89 823-828 (2006)
    Anné, G.; Vanmeensel, K.; Vleugels, J.; Van der Biest, O.;” A Mathematical Description of the Kinetics of the Electrophoretic Deposition Process for Al2O3-Based Suspensions” Journal of the American ceramic society., 88 2036-2039 (2005)
    Bard, A. J.; Faulkner, L. R.; Electrochemical methode John Wiley & Sons, Inc, USA, pp. 101- 110 (1980)
    Biesheuvel, P.; Verwey, M. H.; “ Improved Low-Temperature Environmental Degradation of Yttria-Stabilized Tetragonal Zirconia Polycrystals by Surface Encapsulation” Journal of the American ceramic society. 82 1451-1455 (1999)
    Böhmer, M. “In situ observation of 2-dimensional clustering during electrophoretic deposition” Langmuir, 42 5747-5750 (1996)
    Chen, F.; Liu, M. “Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM–YSZ substrates using an electrophoretic deposition (EPD) process “Journal of the European Ceramic Society. 21 127-134 (2001)
    Chu, C. T.; Dunn, B. “Fabrication of YBa2Cu3O7–y superconducting coatings by electrophoretic deposition” Applied Physics Letters, 55 492-494 (1989)
    Cybenko, G. Continuous valued neural networks with two hidden layers are sufficient. Technical report. Department of Computer Science, Tufts University, Medford, Mass. pp. 11-29 (1988)
    De Beer, E.; Duval, J.; Meulenkamp, E. A. “Electrophoretic Deposition: A Quantitative Model for Particle Deposition and Binder Formation from Alcohol-Based Suspensions” Journal of Colloid and Interface Science. 222 117-124 (2000)
    Elimelech M.; Gregory, J.; Jia, Xi; Willams, R. A. Particle deposition and aggregation- Measurement, modeling and simulation, Butterworth-Heinemann Ltd, New York, pp.232-241 (1995)
    Emperline, P. J.; Long, J. R.; Gregoriou, V. G. “Nonlinear multivariate calibration using principal components regression and artificial neural networks” Analytical Chemistry 63 2313-2320. (1991)
    Estrelia-L’opis, V. R.; Ul’berg, Z. P.; Koniashvili, S. A. “Mechanism of Electrophoretic Deposition of Aqueous Dispersions in a Pulsed Field.” Kolloidnyi Zhurnal, 44 91-96 (1980)
    Gasteiger, J.; Li, X.; Rudolph, C.; Sadowski, J.; Zupan J. “Representation of Molecular Electrostatic Potentials by Topological Feature Maps” Journal of the American Chemical Society, 116 4608-4614 (1994)
    Gasteiger, J.; Zupan, J.; Neural Networks in Chemistry Angewandte Chemie International Edition in English. 32 503-527 (1993)
    Grillon, F.; Fayellue, D.; Jeandin, M. “Quantitative image analysis of electrophoretic coatings” Journal of Materials Science Letters., 11 272 -275 (1992)
    Guechler, S. A. Investigating the mechanism of aggregation of colloidal particles during electrophoretic deposition, Thesis (Ph.D.) Carnegie Mellon University, pp. 32-48 (1999).
    Hagan, M. T.; Demuth, H. B.; Beale, M. Neural network Design, PWS pp. 11-32 (1996)
    Ham F. M., Kostanic I. Principles of Neurocomputing for Science and Engineering. McGraw-Hill, New York, pp. 32-58 (2001)
    Hamaker, H. C.; Verwey, E. J. W.; “Part II.—(C) Colloid stability. The role of the forces between the particles in electrodeposition and other phenomena” Transactions of the Faraday Society. 35 180-185 (1940)
    Hamaker H. C., Verwey E. J. W., “The influence of particle size on the physical behaviour of colloidal systems” Transactions of the Faraday Society. 35 186-192 (1940)
    Haykin, S. Neural networks: a comprehensive foundation, New York, MacMillan, pp. 245-265 (1994)
    Honvanar, V.; Uhr, L. Artificial Intelligence and Neural Networks- Steps toward principled Integrations Academic press, San Diego, pp. 250-261 (1994)
    Ishihara, T.; Shimose, K.; Kudo, T.; Nishiguchi, H.; Akbay, T.; Takita, Y. “Preparation of Yttria-Stabilized Zirconia Thin Films on Strontium-Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells “Journal of the American ceramic society. 83 1921-1927 (2000)
    Jordan, S. N.; Leach, A. R.; Bradshaw, J. “The Application of Neural Networks in Conformational Analysis. 1. Prediction of Minimum and Maximum Interatomic Distances” Journal of Chemical Information and Computer Sciences, 35 640-650 (1995)
    Keh, H. J.; Lien, L. C. “ Electrophoresis of a dielectric sphere normal to a large conducting plane” Journal of Chinese Institutional Chemical Engineering., 20 283-290 (1989)
    Koelmans, H. “Suspensions in Non Aqueous Media” Philips Research Reports, 10 161-193 (1955)
    Koelmans, H.; Overbeek, J. Th. G. “Stability and electrophoretic deposition of suspensions in non-aqueous media” Discussions of the Faraday Society., 18 52-63 (1954)
    Koura, N.; Tsukamoto, T.; Shoji, H.; Hotta, T. “Preparation of Various oxide films by an electrophoretic deposition method: A study of the mechanism.” Japanese Journal of Applied Physics. 34 1643-1647 (1995)
    Levenberg, K. “A method for the solution of certain problems in least squares”, Quarterly of Applied Mathematics 2 164-168 (1944)
    Lobanov, A.; Borisov, V.; Gordn, S. H.; Greene, R. V.; Leathers, T. D.; Reshetilov, A. N. “Analysis of ethanol–glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing” Biosensors and bioelectronics. 16 1001-1019 (2001)
    Maiti, H. S.; Datta, S.; Basu, R. N.” High-Tc Superconductor Coating on Metal Substrates by an Electrophoretic Technique” Journal of the American ceramic society., 72 1733-1735 (1989)
    Majcen, N.; Rajer-Kanduc, K.; Novic, N.; Zupan J., “Modeling of Property Prediction from Multicomponent Analytical Data Using Different Neural Networks” Analytical Chemistry. 67 2154-2160 (1995)
    Marquardt, D. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters” SIAM Journal on Applied Mathematics. 11 41-51 (1963)
    Montgomery, D. C. Design and Analysis of Experiments ,5th, John Wiley & Sons, New York, pp.384-392 (2001)
    Nagai, M.; Yamashita, K.; Umegaki, T.; Takuma, Y.” Electrophoretic Deposition of Ferroelectric Barium Titanate Thick Films and Their Dielectric Properties” Journal of the American ceramic society. 76 253-255 (1993)
    Negishi, H.; Yamaji, K.; Imura, T.;Kitamoto, D.; Ikegami, T.; Yanagishita H. “Electrophoretic Deposition Mechanism of YSZ/n-Propanol Suspension” Journal of the Electrochemical Society., 152 J16-J22 (2005)
    Nojima, H.; Shintaku, H.; Nagaa, M.; Koda, M. “Fabrication of Ag-Doped Y1Ba2Cu3O7-x Superconducting Films on Cu Substrates by Electrophoretic Deposition” Japanese Journal of Applied Physics, 30 1166-1168 (1991)
    Powers R. W. “Ceramic Aspects of Forming beta Alumina by Electrophoretic DEPOSITION” American Ceramic Society Bulletin. 65 1270-1277 (1986)
    Powers R. W., “Powder Requirements for beta Alumina Ceramics Formed by Electrophoretic Deposition “American Ceramic Society Bulletin. 65 1277-1281 (1986)
    Principe, J. C.; Euliano, N. R.; Lefebvre, W. C. Neural and Adaptive Systems: Fundamentals through Simulations., John-Wiley & Sons, New York, pp. 107-109 (2000)
    Hunter, R. J.; White, L. R. Foundations of colloid science vol.1 Oxford University Press, London, pp. 328-350 (1989)
    Raj, A. S.; Ravi, R.; Partiban, T.; Radhakrishnan, G. “Artificial neural network applications in electrochemistry- a review” Bulletin of Electrochemistry. 15 552-558 (1999)
    Reed, R. D.; Marks, R. J.; Neural smithingsupervised learning in feed-forward artificial neural networks, The MIT press pp.215-220 (1999)
    Sarkar, P.; Nicholson, P. S. ”Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics” Journal of the American ceramic society., 79 1987-2002 (1996)
    Sawyer, D. T.; Sobkowiak, A. S.; Roberts, J. L.; Electrochemistry for Chemists Wiley, New York, pp. 279-283 (1995).
    Schuur, J.; Gasteiger, J. “Infrared Spectra Simulation of Substituted Benzene Derivatives on the Basis of a 3D Structure Representation” Analytical Chemistry. 69 2398-2406 (1997)
    Shane, M. J.; Talbot, J. B.; Kinney, B. G.; Sluzky, E.; Hesse, K. R. “Electrophoretic Deposition of Phosphors: II. Deposition Experiments and Analysis” Journal of Colloid and Interface Science, 165 334-340 (1994)
    Shimbo, M.; Tanzawa, K.; Miyakawa, M.; Emoto, T., “Electrophoretic Deposition of Glass Powder for Passivation of High Voltage Transistors” Journal of the Electrochemical Society , 132 393-398 (1985)
    Simon, V.; Gasteiger, J.; Zupan, J. “ A combined Application of Two Different Neural Network Types for the Prediction of Chemical Reactivity” Journal of the American Chemical Society, 115 9148 -9152 (1993)
    Siracuse, J. A.; Talbot, J. B.; Sluky, E.; Avalos, T.; Hesse, K. R.; “Cataphoretic Deposition of Phosphor” Journal of the Electrochemical Society, 137 2336-2340 (1990)
    Solomentsev, Y.; Bohmer, M.; Anderson, J. L.; “Particle clustering and pattern formation during electrophoretic deposition: A hydrodynamic model“ Langmiur, 13 6058-6063 (1997)
    Talai, A.; Romagnoli, J. A. “An integrated artificial neural network/polymer-based pH sensor: a new engineering perspective to conducting polymer technology “Synthetic Metals, 82 231-239 (1996)
    Trau, M.; Saville, D. A.; Aksay, I. A. “ Assembly of colloidal crystals at electrode interfaces” Langmuir, 13 6375-6380 (1997)
    Trau, M.; Saville, D. A.; Aksay, I. A., “Field-Induced Layering of Colloidal Crystals” Science, 272 706-711 (1996)
    Ventura, S.; Silva, M.; Perez-Bendito, D. “Artificial Neural Networks for Estimation of Kinetic Analytical Parameters” Analytical Chemistry, 67 1521-1530 (1995)
    Zupan, J.; Gasteiger, J. “Neural networks: a new method for solving chemical problems or just a passing phase?” Analytica Chimica Acta, 248 1-9 (1991)
    Zupan, J.; Novic, M.; Li, X.; Gasteiger, J. “12 Neural Networks and Genetic Algorithms in Chemistry” Analytica Chimica Acta, 292 219-224 (1994)
    Zupan, J.; Novic, M. “General type of a uniform and reversible representation of chemical structures” Analytica Chimica Acta, 348 409-414 (1997)

    下載圖示 校內:2017-07-24公開
    校外:2017-07-24公開
    QR CODE