| 研究生: |
唐健庭 T-Tang, Jim |
|---|---|
| 論文名稱: |
由地震震源機制之變化探討1999年Mw 7.6 集集地震前後車籠埔斷層下盤之應力釋放過程 Stress Releases in the Footwall of the Chelungpu Fault: Observations from Earthquake Focal Mechanisms Before and After 1999 Mw 7.6 Chi-Chi Earthquake |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 震源機制 、應力反演 、應力軸互換 、應力釋放 |
| 外文關鍵詞: | focal mechanisms, stress inversion, stress permutation, stress releases |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討1999年集集大地震(Mw=7.6)後,於車籠埔斷層下盤附近有一明顯平行八卦台地的地震密集帶,該地震帶在集集地震前鮮有地震活動,受到大地應力改變而觸發。根據1991年3月至2005年7月中央氣象局611筆的短週期地震站資料,選取芮氏規模2.8~8的地震進行三維重新定位、初動法求取震源機制343筆並做應力反演等分析。本研究延續了倪偉峰(2003)的研究,並補足因若干時段地震資料的不足所欠缺的完整性。
本研究利用應力反演後所得到的值()隨時間的變化,將應力變化分成四個時期:(1)集集地震前淺部地殼(< 14 km)主要以東西伸張的正斷層為主,地震事件發生在八卦台地東南側,其伸張方向為101.5°,值為0.37;(2)震後兩個月內下盤地區同時出現正、逆、走滑酸種機制,其中正斷層為東西伸張、逆斷層為近南北壓縮,走滑斷層的伸張/壓縮軸則與前二者一致;而正斷層最小主應力軸為79°的伸張,值為0.64,逆斷層最大主應力軸為46.1°的擠壓,值為0.48。(3)震後的兩個月後至2001/02則以東西伸張的正斷層為主,並延續至今。其正斷層最小主應力軸呈89°的伸張,值為0.75。(4)2001/02以後,仍以東西伸張的正斷層為主,其最小主應力軸為102°,值為0.93。逆斷層機制完全消失,且出現東西擠壓的走滑斷層機制。由各時期的正斷層應力場均顯示高的值,顯示容易發生主應力軸交換而演變成南北擠壓與東西伸張的走向滑移應力場。整個震後的應力狀態在EW方向上持續減少,NS方向上持續增加;約在震後17個月後(2001/02),EW方向上開始累積應力。深部地殼(> 14km)應力變化可分為三個時期:(1)集集地震前均為近東西方向擠壓的逆斷層,最大主應力軸128.1°,值為0.68;(2)地震後至2000年6月:此時期地震活動幾乎靜止;(3)2000年6月以後:開始出現地震活動,機制仍然為近東西方向擠壓的逆斷層;最大主應力軸為108.4°,值為0.47。深淺地殼所反演的值顯示地震後東西方向水平應力均減少,淺部地殼東西水平應力開始累積的時間點與深部地殼時間點相差約八個月,反映了深淺地殼差異極大的物理性質。
After 1999 Mw 7.6, Chi-Chi, Taiwan earthquake, there is a seismic zone, parallel to the Pakua tableland, in the footwall of Chelungpu fault. The seismic zone was quiet before Chi-Chi earthquake and seemed to be triggered by stress change. In this study, 607 seismic zone data from Central Weather Bureau were being 3D-relocated and double-differenced relocated, 343 earthquake focal mechanisms were determined before analysing stress inversion. We expect to have complete story after filling lacking data in Ni’s (2003) study.
valuechanges with time is a kind of index to know stress changes relatively (where means the maximum principal axis, means the minimum and is the middle one). We divided four periods of stress change in < 14km depth of footwall area: (1) Before Chi-Chi earthquake, EW-tensioned normal faults are dominant, and seismic zone is focus on the south-eastern side of Pakua tableland. The orintation of is 101.5° with =0.37. (2) In two months after Chi-Chi earthquake, there are normal, thrust and strike-slip faults coexisted in the footwall area. Normal fault mechanisms are in WE tension, thrust mechanism are in close to NS compression, and strike-slip mechanisms have the same P/T axes orientation of normal’s and thrust’s. Stress tensor of normal faults has value 0.64 with =79°, and direction is 46.1° with value 0.48. (3) Post two months after Chi-Chi earthquake to Febuary 2001, EW-tensioned normal fault mechanisms are dominant, and the orientation if is 89.0° with value 0.75. (4) After Febuary 2001, seismicity seems to be quiet compared with prevous period, and thrust fault mechanisms are completely disappear. Deeper crust (> 14km) present three period of stress state: (1) before Chi-Chi earthquake, almost all mechanism are EW thrust faulting, where the direction is 128.1° with value 0.68; (2) From Chi-Chi E.Q to June 2000, the seismicities are almost quiet; (3) After June 2000, seismic activities began and composed by EW thrust mechanisms, direction is 108.4° with value 0.47。EW horizontal stress drop was seen on value, both shallower and deeper crust. The differential time that EW horizontal stress start increasing between shallower and deeper crust is eight months, this reveals extremely different properties of different depth.
中文部分
李錫堤(1986),大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立臺灣大學地質研究所博士論文。
何春蓀(1988),台灣地質概論/台灣地質圖說明書,經濟部中央地質調查所。
鄭世楠(1995),台灣鄰近地區大地應力的分佈與研究,國立中央大學地球物理所博士論文。
倪偉峰(2003),集集地震前後車籠埔斷層下盤地區地震活動之研究,國立成功大學地球科學系碩士論文。
呂玉蔻(2004),使用震源機制逆推台灣地區應力分區狀況,國立中央大學地球物理所碩士論文。
英文部分
Aki, K., and P.G. Richards (2002), Quantitative Seismology: Theory and methods, 2nd. ed., University Science Books, California.
Angelier, J. (1979), Determination of the mean principal stresses for a given fault population. Tectonophysics, 56, T17–T26.
Angelier, J. (1984), Tectonic analysis of fault slip data sets, J. Geophys. Res., 89(B7), 5835-5848.
Angelier, J. (1994), Fault slip analysis and palaeostress reconstruction, In Continental Deformation, Edited by P. Hancock, 53-100, Pergamon, New York.
Angelier, J. (2002), Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV— a new method free of choice among nodal planes Geophys. J. Int. 150, 588-609.
Biq, C. (1992), Another coastal range on Taiwan, Ti-Chih, 12, 1-12. (in Chinese, with English abstract).
Bernard, P. and A. Zollo (1989), Inversion of near source S polarization for parameters of double couple point sources, Bull. Seismol. Soc. Am., 79, 1779-1809.
Chang, S.L. (1971), Surface geologic study of the Taichung basin, Taiwan. Petrol. Geol. Taiwan, 8, 21-45.
Chen, K.-C., B.-S. Huang and H.-Y. Yen (2002), Conjugate thrust faulting associated with the 1999 Chi-Chi, Taiwan, earthquake sequence, Geophys. Res. Lett., 29(8), doi:10.1029/2001GL014250.
Chou, J.-T. (1973), Sedimentology and Paleogeography of the upper Cenozoic system of western Taiwan, Proc. Geol. Soc. China, 16, 111-143.
Chou, Y.-W. And H.-S. Yu (2002), Structural expressions of flexural extension on the arc-continent collisional foredeep of western Taiwan, Geol. Soc. Am., Special Paper, 358, 1-12.
Das, S., and C. H. Scholz (1981), Off-fault aftershock clusters caused by shear stress increase? Bull. Seiemol. Soc. Am., 71, 1669-1675.
Deffontaines, B., J.-C. Lee, J. Angelier, J. Carvalho, and J.-P. Rudant (1994), New geomorphic data on the active Taiwan orogen: A multisource approach, J. Geophys. Res., 99, B10, 20243-20266.
Deffontaines, B., O. Lacombe, J. Angelier, H. T. Chu, F. Mouthereau, C. T. Lee, J. Deramond, J. F. Lee., M. S. Yu, P. M. Liew (1997), Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach, Tectonophysics, 274, 61-82.
Du, Y. and A. Aydin (9999), Elastic stress relaxation: A mechanism for opposite sense of secondary faulting with respect to a major fault, Tectonophysics, 257, 175-188.
Ellsworth, W. L. and X. Zhonghuai (1980), Determination of the stress tensor from focal mechanism data, Abstract, Eos Trans. AGU, 61, 1117-1980.
Gephart, J. W. (1984), An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence, J. Geophys. Res., 89(B11), 9305-9320.
Gephart, J. W. (1985), Principal stress directions and the ambiguity in fault plane identification from focal mechanisms, Bull. Seismol. Soc. Am., 75(2), 621-625.
Gephart, J. W. (1990a), Stress and the direction of slip on fault planes, Tectonics, 9(4), 845-858.
Gephart, J. W. (1990b), FMSI: A fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. And Geosci., 16(7), 953-989.
Gomberg, J. S., K. M. Shedlock and S. W. Roecker (1990), The effect of S-wave arrival times on the accurancy of hypocenter estimation, Bull. Seismol. Soc. Am., 80, 1605-1628.
Gross, S. (2001), A model of tectonic stress state and rate using the 1994 Northridge earthquake sequence, Bull. Seismol. Soc. Am., 91(2), 263-275.
Gudmundsson, A. and C. Homberg (1999), Evolution of stress fields and faulting in seismic zones, Pure Appl. Geophys. 154, 257-280.
Hsiao, P. T. (1971), Seismic study of the area between the Coastal Plain and the Foothills, Yunlin, Taiwan, Petrol. Geol. Taiwan, 8, 249-263.
Hu, J.-C., J. Angelier, J.-C. Lee, H.-T. Chu and D. Byrne (1996), Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling, Tectonophysics, 255, 243-268.
Hu, J.-C., Angelier, J., Homberg, C., Lee, J.-C., and Chu H.-T. (2001), Three-dimensional modeling of the behavior of the oblique convergent boundary of southeast Taiwan: friction and strain partitioning. Tectonophysics, 333, 261-276.
Hu, J.-C., and J. Angelier (2004), Stress permutations: Three-dimentional distinct element analysis accounts for a common phenomenon in brittle tectonics, J. Geophys. Res., 109, B09403, doi:10.1029/2003JB002616.
Jeng, F.-S., M.-H. Hsiao and C.-Y. Lu (1996), Numerical simulation of neotectonics near Peikang High, J. Geol. Soc. China, 39(4), 557-578.
Kao, H. and W. P. Chen (2000), The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Kao, H. and J. Angelier (2001a), The ChiChi earthquake sequence, Taiwan: results from source parameter and stress tensor inversions, Earth and Planetary Sciences, 333, 65-80.
Kao, H. and J. Angelier (2001b), Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional collision, Bull. Seismol. Soc. Am., 91(5), 1028-1040.
King, G. C. P., R. S. Stein, J. Lin (1994), Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935-953.
Kissling, E. (1995), VELEST user’s guide-short introduction, Tech. Rep., Institute of Geophysics and Swiss Seismological Service, ETH Zuerich.
Kisslinger, C. (1980), Evalution of S to P amplitude ratios for determining focal mechanisms from regional nerwork observations, Bull. Seismol. Soc. Am., 70(4), 999-1014.
Kisslinger, C., J. R. Bowman, and K. Koch (1981), Procedures for computing focal mechanisms from regional network observations, Bull. Seismol. Soc. Am., 70, 999-1014.
Lee S. J., and K. F. Ma (2000), Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data, TAO, 11, 591-608.
Lin, C. H., Yeh, Y. H. and Y. B. Tsai (1986), Determination of regional pricipal stress directions on Taiwan from fault plane solution, Bull. Inst. Earth Sci., Academia Sinica, 5, 67-82.
Lu, C.-Y. (1994), Neotectonics in the foreland thrust belt of Taiwan, Petro. Geol. Taiwan, 29, 1-26.
Lu, C.-Y., and J. Malavieille (1994), Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modeling, Earth Planet. Sci. Lett., 121, 477-494.
Ma, K., and J. Mori (2000), Rupture process of the 1999 Chi-Chi, Taiwan earthquake from direct observatios and joint inversion of strong motion, GPS and teleseismic data, EOS Tran. Am. Geophys. Union 81, WP104.
McKenzie, D. P. (1969), The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59(2), 591-601.
Meng, C.-Y. (1971), A conception of the evolution of the island of Taiwan and its bearing on the development of the western Neogene sedimentary basins, Petrol. Geol. Taiwan, 9, 239-258.
Michael, A. J. (1984), Determination of stress from slip data: faults and folds, J. Geophys. Res., 89(B13), 11517-11526.
Michael, A. J. (1987), Stress rotation during the Coalinga aftershock sequence, J. Geophys. Res., 92(B8), 7963-7979.
Mount, V.S. and J. Suppe (1992), Present-Day stress orientations adjacent to active strike-slip faults: California and Sumatra, J. Geophys. Res., 97(B8), 11995-12013.
Mouthreau, F., O. Lacombe, B. Deffontaines, J. Angelier, H. T. Chu, and C. T. Lee (1999), Quaternary transfer faulting and belt front deformation at Pakuashan (western Taiwan), Tectonics, 18(2), 215-230.
Pavlis, G. L. (1986), Appraising earthquake hypocenter location errors: a complete, practical approach for single-event locarion, Bull. Seismol. Soc. Am., 76, 1699-1717.
Rau, R.-J. and F. T. Wu (1995), Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133,517-532.
Rau, R.-J. (1996a), 3-D tomography, focal mechanisms, and Taiwan orogeny, Ph. D. Thesis in Geology, State Univ. Of New York at Binghamton.
Rau, R.-J., F. T. Wu and T. C. Shin (1996b), Regional network focal mechanism determination using 3-D velocity model and SH/P amplitude ratio, Bull. Seismol. Soc. Am., 86, 1270-1283.
Rau, R.-J. and F. T. Wu (1998), Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes, Terr. Atmos. Ocean. Sci., 9(4), 755-778.
Reasenberg, P. A., and R. W. Simpson (1992), Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1687-1690.
Sbar, M. L. (1982), Delineation and interpretation of seismotectonic domains in western North America, J. Geophys. Res., 87, 3919-3928.
Seeber, L. and J. G. Armbruster (2000), Earthquakes as beacons of stress change, Nature 407, 69-72.
Smith, R. B. (1977), Intraplate tectonics of the western North American plate, Tectonophysics, 37, 323-336.
Snoke, J. A., J. W. Munsey, A. G. Teague, and G. A Bollinger (1984), A program for focal mechanism determination by combined use of polarity and SV/P amplitude ratio data, Earthquake Notes, 55(3), 15.
Snoke, J. A. (2003), FOCMEC: FOcal MEChanism determinations, International Handbook of Earthquake and Engineering Seismology (W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Eds.), Academic Press, San Diego, Chapter 85.12.
Suppe, J. (1980a), A retro deformable cross section of north Taiwan, Proc. Geo. Soc. China, 23, 46-55.
Suppe, J. (1980b), Imbricated structure of western foothills belt, south centeral Taiwan, Petro. Geol. Taiwan, 17, 1-16.
Suppe, J. (1984), Seismic interpretation of the compressively reactivated normal fault near Hsinchu, western Taiwan, Petrol. Geol. Taiwan, 20, 85-96.
Suppe, J. (1987), The active Taiwan mountain belt, in the Anatomy of mountain Ranges, edited by J. P. Schaer and J. Rodgers, Princeton Univ. Press, Princeton, 277-293.
Sylvester, A. G. (1988), Strike-slip faults, Geol. Soc. Am. Bull., 100, 1666-1730.
Tang, C. H. (1977), Late Miocene erosional unconformity of the subsurface Peikang high beneath the Chiayi-Yunlin coastal plain, Taiwan, Mem. Geol. Soc. China, 2, 155-167.
Teng, L. S. (1990), Geotectonic evolution of Late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76.
Thurber, C. H. (1983), Earthquake locations and three-dimentioanl crustal structure in the Coyote Lake area, central California, J. Geophys. Res., 88, 8226-8236.
Waldhauser, F., W. L. Ellsworth and A. Cole (1999), Slip-parallel seismic lineations along the northern Hayward fault, California, Geophys. Res. Lett., 26, 3525-3528.
Waldhauser, F., W. L. Ellsworth (2000), A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am., 90, 1353-1368.
Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 72, 373-382.
Wu, F. T., R. J. Rau and D. Salzberg (1997), Taiwan orogeny: thin-skinned or lithospheric collision?, Tectonophys., 274, 191-220.
Yeh ,Y.-H., Barrier, E., Lin, C.-H. and Angelier, J. (1991), Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophys., 200, 267-280.
Zhao, D., H. Kanamori and D. Wiens (1997), State of stress before and after the 1994 Northridge earthquake, Geophys. Res. Lett., 24, 519-522.
Zoback, M. L. and M. Magee (1991), Stress magnitudes in the crust: constraints from stress orientation and relative magnitude date, Phil. Trans. R. Soc. Lond., 337, 181-194.
Zollo, A. and P. Bernard (1991), Fault mechanisms from near source data: joint inversion of S polarizations and P polarities, Geophys. J. Int., 104, 441-451.