| 研究生: |
安旭花 Rinata, Adelia |
|---|---|
| 論文名稱: |
La1-xSrxCuO2.5-δ/SrTiO3 複合材料熱電性質之研究 Thermoelectric Properties of La1-xSrxCuO2.5-δ/SrTiO3 Composite Materials |
| 指導教授: |
黃啟祥
Shyang, Hwang Chii |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 熱電材料 、La1-xSrxCuO2.5-δ 、鈦酸鍶 、燒結 、功率因子 |
| 外文關鍵詞: | Thermoelectric materials, La1-xSrxCuO2.5-δ, SrTiO3, Sintering, power factor |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電材料和裝置已被廣被使用於能量轉換器,傳感器,和熱電冷卻的領域。陶瓷熱電材料也是眾所周知的環保材料。 La1-xSrxCuO2.5-δ 由於其氧缺陷鈣鈦礦結構導致其具有良好的金屬般的導電性,因此,它可以被考慮為一種的熱電材料。
本研究檢討了SrTiO3對La1-xSrxCuO2.5-δ 的燒結行為和熱電性能的影響。前軀體混合粉末是以固相法製備。混合粉末經800℃持溫2.5小時的煅燒後,形成單一相的La0.8Sr0.2CuO2.5-δ。燒結溫度和SrTiO3的添加量成為可變的參數。在O2氣氛下燒結所得塊材,其相對密度是隨著燒結溫度的增加而增加,亦隨SrTiO3添加量的增加而減少。SrTiO3抑制La0.8Sr0.2CuO2.5–δ 的晶粒生長。
就熱電性能而言, SrTiO3的添加降低了燒結塊材的導電性。未添加(0wt% )SrTiO3的塊材具有最佳的電傳導性質, 880秒/厘米。而Seebeck係數的值是隨SrTiO3的增加而增加; 添加5wt%SrTiO3的塊材具有最高的Seebeck係數,在350K時達到3550 μV/K。該5wt%SrTiO3的塊材顯示出最高的功率因子,9x104μW/mK2
Thermoelectric materials and devices have been widely used in the fields of energy conversion, sensors, and thermoelectric cooling. The ceramic thermoelectric materials are also well-known as environmentally friendly. La1-xSrxCuO2.5-δ shows a good metallic electrical conductivity owing to its oxygen-defect perovskite structure. Therefore, it can be considered as one kind of thermoelectric materials.
The effect of adding SrTiO3 on sintering behavior and thermoelectric properties of La1-xSrxCuO2.5-δ were investigated in this study. The precursor powders were prepared by solid state method. After calcination at 800oC for 2.5 hours, the powder shows a single phase of La0.8Sr0.2CuO2.5-δ. Sintering temperature and contents of SrTiO3 become variable parameters. After a sintering process at O2 atmosphere, the relative density of bulk increases with increasing sintering temperature. SrTiO3 inhibited the grain growth of La0.8Sr0.2CuO2.5-δ.
In terms of thermoelectric properties, adding the SrTiO3 decreased the the electrical conductivity of bulk. The highest value of electrical conductivity, 880 S/cm, was obtained by 0 wt% SrTiO3 sample. However the Seebeck coefficient value increased with increasing the contents of SrTiO3. The highest value of Seebeck coefficient was 3550 µV/K achieved by 5 wt% SrTiO3 sample at 350K. The 5 wt% SrTiO3 sample showed the highest power factor, is 9x104 µW/mK2
A N Maljuk, G. A. E. c., I I Zver'kova, and A V Kosenko. (1994). Crystallization regions of the La2Cu205 and La1-xSrxCu02.5 phases in the La2O3-SrO-CuO system. Superconductor Science Technology, 7, 596.
A. Roger, D. Souza, M. Saiful Islam and E. Ivers-Tiffee. (1999). Formation and migration of cation defects in the perovskite oxide LaMnO3. Journal Material Chemical, 9, 1621-1627.
Andrew F. May, J.-P. F., and G. Jeffrey Snyder. (2008). Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Physical Review B, 78(12), 5205-5217.
Chia-Hung Kuo, H.-S. C., Chii-Shyang Hwang, Ya-Wen Chou, Ming-Shan Jeng, and Masahiro Yoshimura. (2011). Thermoelectric Properties of Fine-Grained PbTe Bulk Materials Fabricated by Cryomilling and Spark Plasma Sintering. Materials Transactions, 52, 795-801.
G. S. Nolas, a. H. J. Goldsmith. (1999). A comparison of projected thermoelectric and thermionic refrigerators. Journal Applied Phys, 4066-4070
G.H. Zheng, Z. H. Y., Z.X. Dai, H.Q. Wang, H.B. Li, Y.Q. Ma, G. Li. (2013). Improvement of the Thermoelectric Properties of (Sr0.9La0.1)3Ti2O7 by Ag Addition. J. Low Temp. Phys, 173(80-87).
Goldsmid, H. J. (2010). Introduction to Thermoelectric. Germany: Springer.
H. C. Yu, K. Z. F. (2003). La1−xSrxCuO2.5−δ as new cathode materials for intermediate temperature solid oxide fuel cells. Materials Research Bull, 38, 231-239.
H. C. Yu, K. Z. F. (2007). Role of strontium addition on the phase transition of lanthanum copper oxide from K2NiF4 to perovskite structure. Journal of Alloys Compound, 440, 62-68.
H. J. Goldsmid, D. M. R., and B. Raton. (1995). CRC Handbook of Thermoelectrics.
H. Udono, K. N., Y. Takahashi, Y. Ujiie, I. J. Ohsugi, T. Iida. (2011). Solution Growth and Thermoelectric Properties of Single-Phase MnSi1.75−x Journal of Electronic Materials, 40(5), 1165-1170.
Harman T, T. P. J., Spears D L, Walsh M P. (2000). Thermoelectric quantum-dot superlattices with high ZT. Journal Electron Materials, 29, 1-4.
Hasegawa, M. I. a. N. (2012). Thermoelectric properties and desification behavior of SrTiO3/TiB2 composites. Material Science Forum, Vols. 706-709, 1909-1914
Hervieu, M. W., J.; Provost, J.; Monot, I.; Verbist, K.; Van Tendeloo, G. (1996). Superconductivity. G., Physica, 262(3-4), 220-226.
Hilaal Alam, S. R. (2012). A Review on the Enhancement of Figure of Merit from Bulk to Nano-Thermoelectric Materials. Nano Energy, 2, 190-212.
Ho-Chieh Yu, K.-Z. F. a. S.-W. C. Effect of Sr addition on structure and conductivity of La1-xSrxCuO2.5-y Perovskite. National Cheng Kung University.
Hong Chao Wang, C. L. W., Wen Bin Su, Jian Liu, Yi Sun, Hua Peng, and Liang Mo Mei. (2011). Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3. J. Am. Ceram. Soc, 94(3), 838–842
Hsing-Yu, L. (2013). Sintering behavior and thermoelectric properties of La-doped stronium titanate oxide bulk materials. National Cheng Kung University, Taiwan.
Huang, Y.-C. (2012). Preparation and thermoelectric properties of Sr-doped Lanthanum Copper oxides bulk materials. National Cheng Kung University, Tainan.
J-Q Yan, J.-S. Z., J B Goodenough. (2004). Thermal Conductivity of La2−xSrxCuO4 (0.05<x >0.22). New Journal of Physics, 6, 143.
J. B. Goodenogh, J. M. L. (1970). Landolt-Bornstein New Series (V4). Berlin and New York: Speinger-Verlag.
J. B. Torrance, P. L. (1991). why are some oxides metallic, while most are insulating? Physica C, 182 351-364.
J. Heremans , C. M. T., Z. Zhang , X. Sun , M. S. Dresselhaus, J. Y. Ying , D. T. Morelli. (1998). Magnetoresistance of bismuth nanowire arrays. Phys. Rev. B, 58, 10091-10095.
J.E. Rodriguez , L. C. M. (2011). La1-xSrxCuO3-δ ceramics as new thermoelectric material for low temperature applications. Journal of Material Science, 65, 46-48.
Jong-Soo Rhyee, E. C., Kyu Hyoung Lee, Sang Mock Lee, Sang Il Kim, Hyun-Sik Kim, Yong Seung Kwon and Sung Jin Kim. (2009). Thermoelectric properties and anisotropic electronic band structure on the In4Se3−x compounds. Applied Physic Letter, 95(21).
Joshi G, L. H., Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS, Chen G, Ren Z. (2008). Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Letters, 12, 4670-4674
Jun Okamoto, G. S., Shugo Kubo, Yasuji Yamada, Hiroyuki Kitagawa, Akiyuki Matsushita, Yuh Yamada, Fumihiro Ishikawa. (2009). Thermoelectric Properties of B-doped SrTiO3 Singe Crystal. Journal of Physics, 176, 1742.
Kornelius Nielsch , J. B., Johannes Kimling , and Harald Böttner. (2011). Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites. Adv. Energy Material, 1, 713-731.
Lamberton G A Jr, B. S., Littleton IV R T, Kaeser M A, Tedstrom R H, Tritt T M, Yang J, Nolas G S. (2002). High figure of merit in Eu-filled CoSb3-based skutterudites. Applied Physic Letter, 80, 598–600.
M.Z. Zhang , X. M. L., W.H. Su. (2005). Preparation and performance of La1−xSrxCuO3−δ as cathode material in IT-SOFCs. J. alloy. Compd, 395, 300-303.
Min Ho Lee, J.-S. R., Mohammad Vaseem, Yoon-Bong Hahn, Su-Dong Park, Hee Jin Kim, Sung-Jin Kim, Hyeung Jin Lee, and Chilsung Kim. (2013). Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites. Applied Physic Letters, 102(223901).
Ming-Shan Jeng, D. Song, Gang Chen and Ronggui Yang (2008). Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. Journal of Heat Transfer, 130(4).
N. Murayama, S. Sakaguchi, F. Wakai, E. Sudo, A. Tsuzuki and Y. Torii. (1988). New Oxygen-Deficient Perovskite Phase, La1-xSrxCuO3-y (0.20≦x≦0.25). Journal Applied Physic, 27, 55-56.
Nolas G S, Johnson. D, Mandrus D G. (2002). Thermoelectric materials and devices. Materials Research Society, 691.
Nolas G S, Morelli. D, T. Tritt TM. (1999). Skutterudites: a phonon-glass-electron-crystal approach to advanced thermoelectrics energy conversion applications. Annu. Rev Material Science, 29, 89–116.
Nolas G S, Slack. G. A. (2001). Thermoelectric clathrates. Am.Sci, 89, 136–141.
Nolas G S, Slack. G. A, Schujman S B. (2000). Semiconducting clathrates: a phonon electron crystal material with potential for thermoelectric applications glass. In: Tritt T M (ed.) Semiconductors and Semimetals. Recent Trends in Thermoelectric Materials Research (vol. 69). San Diego: Academic Press.
Nolas G S, Slack. J, Goldsmid H J. (2001). Thermoelectrics: Basic Principles and New Materials Developments.
Okuta. T, N. K., Miyasaka. S, Tokura. Y. (2001). Large thermoelectric response of metallic perovskites : Sr1-xLaxTiO3 (0<=x<=0.1). Physical Review B, 63(114103).
Pechini, M. P. (1967). Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor. U. S. Pat, 11(3 330 697).
Poon, S. J. (2000). Electronic and thermoelectric properties of half- Heusler alloys. In: Tritt T M (ed.) Semiconductors and Semimetals. Recent Trends in Thermoelectric Materials (vol. 70). San Diego: Thermoelectric Materials Research, Academic Press.
Punita Srivastava, K. S. (2013). Synthesis and Dielectric Relaxation Behavior of Metallic Bi2Te3 Nanotubes. Materials Letters, 108, 25-28.
Richman, R. (2002). Prospects for efficient thermoelectric materials in the near term. San Diego, CA, DARPA/DOE High Efficient Thermoelectric.
Rowe, D. M., ed. (2010). Thermoelectric Handbook: Macro to Nano CRC Press.
S. B. Riffat, a. X. M. (2003). Thermo-electrics: A review of present and potential applications. Applied Thermal Engineering, 23, 913-935.
Stabler, F. (2002). Automotive applications for high efficiency thermoelectrics. San Diego, California DARPA/DOE High Efficient Thermoelectric Workshop.
Syh-Yuh Chang, S.-L. F., Chung-Chuang Wei. (1989). Sintering of SrTiO3 with Li2O3 addition. Ceramic International, 15, 231-236.
Tim C. Holgate, L. H., NingYu Wu, Espen D. Bojesen, Mogens Christensen, Bo B. Iversen, Ngo Van Nong, Nini Pryds. (2013). Characterization of the Interface Between an Fe–Cr Alloy and the p-type Thermoelectric Oxide Ca3Co4O9. Alloys and Compounds, 582, 827-833.
Tritt T M, K. M., Lyon H B, Mahan G D, (eds.). (1997). Thermoelectric materials—new directions and approaches. Materials Research Society, 478.
Tritt T M, K. M. G., Lyon H B, Mahan G D (eds.). (1998). New material for small-scale thermoelectric refrigeration and power generation applications. Materials Research Society, 545.
Tritt, T. e. (2000). Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research (vol. 69–71). San Diego: Academic Press.
Uher, C. (2000). Skutterudites: prospective novel thermoelectrics. In: Tritt T M (ed.) Semiconductors and Semimetals. Recent Trends in Thermoelectric Materials Research (vol. 69). San Diego: Academic Press.
Venkatasubramanian R, S. E., Colpitts T, O’Quinn B C. (2002). Thin-film thermoelectric devices with high room temperature figures of merit. Nature, 413, 597–602.
Wenjie Xie, X. T., Yonggao Yan, Qingjie Zhang, and Terry M. Tritt. (2009). Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 94(102111).
X. W. Wang, H. L., Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren. (2008). Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Applied Physic Letter, 93(193121).
Y.-M. Lin , X. S., M. S. Dresselhaus. (2000). Theoritical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B 62, 4610-4623.
Y. Ichino, T. N., M. Kaikawa. (2008). Thermoelectric Properties of RE2-xMxCuO4 Oxide Sintering Bulks. Elec. Com Japan, 91(12), 24-28.
Yi Ma, Q. H., Bed Poudel, Yucheng Lan, Bo Yu, Dezhi Wang, Gang Chen, and Zhifeng Ren. (2008). Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks. Nano Letters, 8(8), 2580-2584.
Yi Ma, R. H., Anders E. C. Palmqvist. (2012). Composite thermoelectric materials with embedded nanoparticles. Journal Material Science, 48, 2767-2778.