| 研究生: |
馬嘉蓮 Ma, Chia-Lien |
|---|---|
| 論文名稱: |
懸掛式膽固醇液晶微球之形態與缺陷研究 Morphology and defect of cholesteric liquid crystal microdroplets suspending on microfibres |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 懸浮液晶微球 、電紡絲 、偶氮苯材料 |
| 外文關鍵詞: | suspended liquid crystal microspheres, electrospinning, azobenzene materials |
| 相關次數: | 點閱:110 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液晶的彈性、旋性與表面錨定力是決定液晶的指向性,以及液晶被侷限在幾何形狀中所形成拓撲缺陷的重要因素。在本論文中,我們製備出懸掛在聚合物纖維上的膽固醇液晶微球,並觀察長螺距或短螺距的微球內部液晶分子受到外部刺激所產生排向變化與缺陷。在此系統中共存有兩種表面錨定力,分別是空氣與膽固醇微球界面處的垂直錨定力,以及聚合物纖維與膽固醇微球界面處的水平錨定力。
本論文的研究分成三個部分。在第一部分,我們觀察到膽固醇液晶微球從各向同性相冷卻到膽固醇相時內部液晶分子的形變過程與最後的平衡狀態,並提出物理模型解釋實驗結果。除了探討膽固醇微球的熱依賴性形變,這項研究的第二部分及第三部分還探討了摻雜偶氮液晶的膽固醇微球和摻雜偶氮手性材料的膽固醇微球對於光場的形變特性。藉由照射紫外光,由光引致偶氮材料的反式至順式異構化可在不改變溫度的情況下擾亂微球內液晶的排向,或是調整膽固醇液晶的螺距長度,進而改變微球內部的液晶分子排列方式及缺陷。由光照控制懸掛在聚合物纖維上的膽固醇液晶微球之內部形變,除了可用於遙控拓撲結構或操控奈米粒子在液晶裡的排列,也為軟物質拓樸結構元件的開發提供了一個新方向。
The orientation of liquid crystals (LC) and the formation of topological defects of LCs in confined geometries are determined by nematic elasticity, chirality, and surface anchoring. In this study, we report the deformations of the inner orientation in cholesteric LC (CLC) microdroplets with short- and long-pitch deposits on polymeric fibers. Two kinds of surface anchoring, namely, perpendicular anchoring at the air–CLC droplet interface and planar anchoring at the fiber–CLC droplet interface, coexist in this system.
This thesis is divided into three parts. In the first part, we observed the equilibrium structures of the CLC microdroplets that were thermally cooled down from isotropic phase to chiral nematic phase. The alignment model of LC molecules under temperature change is proposed. The second and third parts of this study discuss the photo-dependent deformations of the azo-CLC microdroplets, which are composed of azo-LC-doped CLCs or azo-chiral-doped CLCs. UV irradiation-induced trans to cis isomerization of the azo-materials can disturb the orientations of the LCs and thus the isothermal phase transition or the pitch variations of the CLCs inside the microdroplets, resulting in inner deformations and alterations of the disclinations in the microdroplets. The photo-controlled deformations and defects of the CLC microdroplets on polymeric fibers presented in this work can not only be used to achieve topological remote control, but can also be applied in nanoscience and biomedical studies, as well as in developing devices based on topologically structured soft media.
1. J. F. Jianhua Zou, “Director configuration of liquid-crystal droplets encapsulated by polyelectrolytes,” Langmuir 26, 7025–7028 (2010).
2. V. A. Loiko, and V. I. Molochko, “Influence of the director field structure on extinction and scattering by a nematic liquid-crystal droplet,” Applied optics 38, 2857-2861 (1999).
3. D. Sec, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft matter 8, 11982-11988 (2012).
4. F. Xu, and P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Physical review E 56, 6853-6860 (1997).
5. V. J. Alino, J. Pang, and K.-L. Yang, “Liquid crystal droplets as a hosting and sensing platform for developing immunoassays,” Langmuir 27, 11784-11789 (2011).
6. J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir 25, 9016-9024 (2009).
7. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332, 1297-1300 (2011).
8. S. Sivakumar, K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso, “Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses,” Advanced functional materials 19, 2260-2265 (2009).
9. E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly,” Nano letters 6, 2243-2248 (2006).
10. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics express 19, 2432-2439 (2011).
11. P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Applied physics letters 98, 141102 (2011).
12. M. Humar, and I. Musevic, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Optics express 18, 26995-27003 (2010).
13. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Optics express 21, 15765-15776 (2013).
14. E. Brasselet, and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” Journal of nonlinear optical physics & materials 18, 167-194 (2009).
15. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device,” Advanced materials 23, 5773-5778 (2011).
16. J. Hernandez, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Optical manipulation of liquid crystal droplets through holographic polarized tweezers: magnus effect,” Molecular crystals and liquid crystals 558, 72-83 (2012).
17. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Applied physics letters 82, 4657-4659 (2003).
18. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, “Fast optical switching by a laser-manipulated microdroplet of liquid crystal,” Applied physics letters 74, 3627-3629 (1999).
19. C. Manzo, D. Paparo, L. Marrucci, and I. Janossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Physical review E 73, 051707 (2006).
20. C. Manzo, D. Paparo, L. Marrucci, and I. Janossy, “Total optical torque and angular momentum conservation in dye-doped liquid crystal droplets spun by circularly polarized light,” Molecular crystals and liquid crystals 454, 101-110 (2006).
21. N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezers,” Small 1, 656-661 (2005).
22. N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” Journal of physics D: Applied physics 38, 2923-2927 (2005).
23. Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Optics express 16, 6877-6882 (2008).
24. J. Bezi´c and S. ˇZumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liquid crystals 11, 593–619 (1992).
25. D.Seˇc, T. Porenta, M. Ravnik and S. ˇZumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft matter 8, 11982–11988 (2012).
26. S. Candau, P. L. Roy and F. Debeauvais, “Magnetic field effects in nematic and cholesteric droplets suspended in a isotropic liquid.” Molecular crystals and liquid crystals 23, 283–297 (1973).
27. J. Bezic´ and S. Zˇumer, “Structures of the cholesteric liquid crystal droplets with parallel surface anchoring,” Liquid crystals 11, 593–619 (1992).
28. F. Xu and P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Physical review E 56, 6853–6860 (1997).
29. D. Secˇ, T. Porenta, M. Ravnik, and S. Zˇumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft matter 8, 11982–11988 (2012).
30. M. Kurik and O. Lavrentovich, “Negative-positive monopole transitions in cholesteric liquid crystals,” JETP letters 35, 444–447 (1982).
31. T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nature communications 6, 7603 (2015).
32. T. Lopez-Leon, V. Koning, K. B. S. Devaiah, V. Vitelli and A. Fernandez-Nieves, “Frustrated nematic order in spherical geometries,” Nature physics 7, 391-394 (2011).
33. B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky and I. I. Smalyukh, “Topological colloids,” Nature 493, 200–205 (2013).
34. Y. Geng, P. L. Almeida, J. L. Figueirinhas, E. M. Terentjev and M. H. Godinho, “Liquid crystal beads constrained on thin cellulosic fibers: electric field induced microrotors and N–I transition,” Soft matter 8, 3634–3640 (2012).
35. E. Terentjev, “Liquid crystals: Interplay of topologies,” Nature materials 12, 187–189 (2013).
36. Y. Geng, D. Sěc, P. L. Almeida, O. D. Lavrentovich, S. Žumer and M. H. Godinho, “Liquid crystal necklaces: cholesteric drops threaded by thin cellulose fibres,” Soft matter 9, 33 (2013).
37. O. D. Lavrentovich and M. Kleman, “Cholesteric liquid crystals: Defect and topology,” in Chirality in Liquid Crystals (Springer, New York, 2001).
38. T. C. Lubensky, “Soft condensed matter physics,” Solid state communications 102, 187 (1997).
39. M. V. Kurik and O. D. Lavrentovich, “Topological defects of cholesteric liquid crystals for volumes with spherical shape,” Molecular Crystals and Liquid Crystals 72, 239-246 (1982).
40. M. Kléman, “Defect in liquid crystals,” Reports on progress in physics 52, 555 (1989).
41. G. Toulouse, and M. Kle’man, “Principles of a classification of defects in ordered media,” Journal de Physique, Lettres 37, 149-151 (1976).
42. E. A. Dubrovin, S. P. Novikov, and A. E. Fomenko, “Modern geometry: Methods and application,” in Sovremennaya Geometriya (Springer, New York, 1979).
43. O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops,” Liquid crystals 24, 117-126 (1998).
44. Y. Hirshberg, “Reversible formation and eradication of colors by irradiation at low temperatures - A photochemical memory model,” Journal of the American Chemical Society 78, 2304-2312 (1956).
45. 楊博智, 含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討 (國立成功大學化工研究所碩士論文, 2003).
46. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Applied physics letters 82, 3593-3595 (2003).
47. F. Namouchi, W. Jilani, and H. Guermazi, “Thermally stimulated depolarization current and dielectric spectroscopy used to study dipolar relaxations and trap level distribution in PMMA polymer,” Journal of Non-Crystalline Solids 427, 76–82 (2015).
48. L. E. Aguirre, A.Oliveiraa, D. Seˇc, S. Copar, P. L. Almeida, M. Ravnik, M. H. Godinho, and S. Žumer, “Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets,” Proceedings of the National Academy of Sciences of the United States of America 113, 1174-1179 (2016).
49. D. Seč, S. Čopar, and S. Žumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nature communications 5, 3057 (2014).
50. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Optics express 18, 9651–9657 (2010).