| 研究生: |
馬世鴻 Ma, Shih-Hong |
|---|---|
| 論文名稱: |
以電沉積二氧化錳電極進行直接電化學氧化有機酸 Electrodeposition of manganese dioxide on Ti-DSA electrode(MnO2@IrO2/Ti) for direct electro-oxidation of carboxylic acids |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 電化學氧化 、電沉積 、二氧化錳 、草酸 、檸檬酸 |
| 外文關鍵詞: | electrochemical oxidation, electrodeposited, manganese dioxide, oxalic acid, citric acid |
| 相關次數: | 點閱:118 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,高級氧化技術(AOPs)常被用來處理傳統方法難以處理的有機廢水,在處理過程中,氫氧自由基降解汙染物後常殘餘以小分子有機酸,如草酸所組成的總有機碳。本研究以電沉積二氧化錳當作氧化劑,以直接電化學氧化法礦化有機酸,並選擇草酸為目標汙染物;所使用陽極與陰極皆為二氧化銥鍍鈦電極(Ti/RuO2/IrO2),實驗以硫酸錳及50 ppm草酸為反應物,探討硫酸錳濃度(5-20 mM)、電流(0-6安培)、初始酸鹼值(pH 1-7)對礦化草酸之效率。結果顯示所有條件都可在90分鐘內達到99%的礦化率,製備電沉積二氧化錳電極最佳操作條件為5 mM硫酸錳、電流4安培以及初始酸鹼值3。 經XRD與SEM分析,電沉積二氧化錳為gamma相與epsilon相,在微觀結構下,表面為纖維狀結構。後續以電沉積二氧化錳電極,定電流4安培直接電化學氧化草酸(50 ppm),該電極至少在三次重複試驗中皆可以在90分鐘內達到99%礦化效果且錳離子溶出量極微量;以定電流4安培直接電化學氧化其他不同有機酸:甲酸、乙酸、丙酸、檸檬酸、蘋果酸之測試,顯示二氧化錳電極對礦化檸檬酸、蘋果酸具有選擇性,礦化率分別為75%與53%(6小時),乙、丙酸則無選擇性,幾乎無礦化效果,而甲酸則是對二氧化銥鍍鈦電極有選擇性,礦化效果為87%(6小時)。
In this study, we use electrodeposited manganese dioxide(EMD) as an oxidizing agent to directly electrochemical oxidize oxalic acid. The anodes and cathodes material were dimensionally stable anode(Ti/RuO2/IrO2 ). The experiment investigated effects of manganese sulfate concentration (5-20 mM), current (0-6 Amps) and initial pH (pH 1-7) on the mineralization of oxalic acid and developing the EMD electrodes. The results showed that all the conditions could reach 99% TOC removal in 90 minutes. The optimal operating conditions to prepare EMD electrodes were 5 mM manganese sulfate, current 4 amps and initial pH 3. By XRD and SEM analysis, the surface of EMD was consisted of the fibrous structure which was gamma (γ-) phase and epsilon (ε-) phase. Furthermore, we reused EMD electrodes to electrochemically degrade oxalic acid (50 ppm) without adding manganese sulfate in three times. The results showed that the TOC removal could reach 99% and no manganese ion solved out from EMD electrodes within three times. We also used EMD electrodes to directly oxidize other carboxylic acid such as formic acid, acetic acid, propanoic acid, citric acid and malic acid. We could find that EMD electrodes were selective to citric acid and malic acid. The TOC removal were 75% and 53%(6 hrs), respectively. However, the acetic acid and propanoic acid weren’t mineralized while using EMD electrodes. And we found that the formic acid is selective to dimensionally stable anode(Ti/RuO2/IrO2 ). The TOC removal was 87% (6 hrs).
[1] Y.-J. Shih, P.-Y. Cheng, B. O. Ariyanto, and Y.-H. Huang, "Electrochemical oxidation of carboxylic acids in the presence of manganese chloride," Journal of The Electrochemical Society, vol. 160, pp. H681-H686, 2013.
[2] H. R. Devlin and I. J. Harris, "Mechanism of the oxidation of aqueous phenol with dissolved oxygen," Industrial & engineering chemistry fundamentals, vol. 23, pp. 387-392, 1984.
[3] W. H. Glaze, J.-W. Kang, and D. H. Chapin, "The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation," 1987.
[4] E. Brillas, I. Sirés, and M. A. Oturan, "Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry," Chemical Reviews, vol. 109, pp. 6570-6631, 2009.
[5] D. M. Stanbury, "Reduction potentials involving inorganic free radicals in aqueous solution," Advances in inorganic chemistry, vol. 33, pp. 69-138, 1989.
[6] J. De Laat, G. T. Le, and B. Legube, "A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H 2 O 2 and organic compounds by Fe (II)/H 2 O 2 and Fe (III)/H 2 O 2," Chemosphere, vol. 55, pp. 715-723, 2004.
[7] M. Fukushima and K. Tatsumi, "Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron (III), humic acid, and hydrogen peroxide," Environmental science & technology, vol. 35, pp. 1771-1778, 2001.
[8] D. J. V.L Snoeyink, and 李敏華, "水質化學(Water chemistry)."
[9] Y. Wang, H. Zhao, S. Chai, Y. Wang, G. Zhao, and D. Li, "Electrosorption enhanced electro-Fenton process for efficient mineralization of imidacloprid based on mixed-valence iron oxide composite cathode at neutral pH," Chemical engineering journal, vol. 223, pp. 524-535, 2013.
[10] M. D. G. de Luna, M. L. Veciana, J. I. Colades, C.-C. Su, and M.-C. Lu, "Factors that influence degradation of acetaminophen by Fenton processes," Journal of the Taiwan Institute of Chemical Engineers, vol. 45, pp. 565-570, 2014.
[11] O. Iglesias, J. Gómez, M. Pazos, and M. Á. Sanromán, "Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads," Applied Catalysis B: Environmental, vol. 144, pp. 416-424, 2014.
[12] M. A. Oturan and J.-J. Aaron, "Advanced oxidation processes in water/wastewater treatment: principles and applications. A review," Critical Reviews in Environmental Science and Technology, vol. 44, pp. 2577-2641, 2014.
[13] 呂冠霖 and 司洪濤, "高濃度 COD 廢水氧化處理評析," 經濟部環保技術 e 報, 台匇市, 2003.
[14] M. Panizza and G. Cerisola, "Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine," Electrochimica acta, vol. 48, pp. 1515-1519, 2003.
[15] G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution," Journal of physical and chemical reference data, vol. 17, pp. 513-886, 1988.
[16] H. Särkkä, M. Vepsäläinen, and M. Sillanpää, "Natural organic matter (NOM) removal by electrochemical methods—A review," Journal of Electroanalytical Chemistry, vol. 755, pp. 100-108, 2015.
[17] L.-C. Chiang, J.-E. Chang, and T.-C. Wen, "Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate," Water Research, vol. 29, pp. 671-678, 1995.
[18] A. DABROWSKI, J. MIELUCH, A. SADKOWSKI, J. WILD, and P. ZOLTOWSKI, "PILOT‐PLANT STUDY OF ELECTROCHEMICAL PHENOL‐WASTE PURIFICATION," Chemischer Informationsdienst, vol. 7, 1976.
[19] C. A. Martinez-Huitle and S. Ferro, "Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes," Chemical Society Reviews, vol. 35, pp. 1324-1340, 2006.
[20] H. Awad and N. A. Galwa, "Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO 2 electrode in the presence of different conductive electrolyte and effect of various operating factors," Chemosphere, vol. 61, pp. 1327-1335, 2005.
[21] C. Comninellis, "Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment," Electrochimica Acta, vol. 39, pp. 1857-1862, 1994.
[22] B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M. Rodrigo, and C. Comninellis, "Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes," Journal of the Electrochemical Society, vol. 150, pp. D79-D83, 2003.
[23] G. Chen, "Electrochemical technologies in wastewater treatment," Separation and purification Technology, vol. 38, pp. 11-41, 2004.
[24] J. Mieluch, A. Sadkowski, J. Wild, and P. Zoltowski, "ELECTROCHEMICAL OXIDATION OF PHENOL COMPOUNDS IN AQUEOUS-SOLUTIONS," Przemysl Chemiczny, vol. 54, pp. 513-516, 1975.
[25] G. Sleptsov, A. Gladkii, E. Y. Sokol, and S. Novikova, "Electrocoagulation treatment of oil emulsion wastewaters of industrial enterprises," Elektronnaya Obrabotka Materialov, vol. 6, pp. 69-72, 1987.
[26] J. Naumczyk, L. Szpyrkowicz, and F. Zilio-Grandi, "Electrochemical treatment of textile wastewater," Water Science and Technology, vol. 34, pp. 17-24, 1996.
[27] L. Szpyrkowicz, J. Naumczykt, and F. Zilio‐Grandi, "Application of electrochemical processes for tannery wastewater treatment," Toxicological & Environmental Chemistry, vol. 44, pp. 189-202, 1994.
[28] C. Comninellis and A. Nerini, "Anodic oxidation of phenol in the presence of NaCl for wastewater treatment," Journal of Applied Electrochemistry, vol. 25, pp. 23-28, 1995.
[29] F. Jacquet, A. Gaset, J. Simonet, and G. Lacoste, "Utilisation de l'electrochimie dans la transformation des produits issus de la biomasse oxydation anodique indirecte de l'isosorbide," Electrochimica acta, vol. 30, pp. 477-484, 1985.
[30] M.-L. Tsai, W.-L. Lee, and T.-C. Chou, "Degradation of Methyl Orange via lndirect Anodic Oxidation in an Undivided Cell," Journal of the Chinese Institute of Chemical Engineers, vol. 32, pp. 517-524, 2001.
[31] V. Islamgulova, E. Shitova, A. Tomilov, and V. Pilyugin, "Kinetics of the indirect electrochemical oxidation of hydrazodicarbonamide," RUSSIAN JOURNAL OF ELECTROCHEMISTRY C/C OF ELEKTROKHIMIIA, vol. 35, pp. 899-901, 1999.
[32] K. Rajeshwar, J. Ibanez, and G. Swain, "Electrochemistry and the environment," Journal of applied electrochemistry, vol. 24, pp. 1077-1091, 1994.
[33] K. Rajeshwar and J. G. Ibanez, Environmental electrochemistry: Fundamentals and applications in pollution sensors and abatement: Academic Press, 1997.
[34] M. Zhou, Z. Wu, and D. Wang, "Electrocatalytic degradation of phenol in acidic and saline wastewater," Journal of Environmental Science and Health, Part A, vol. 37, pp. 1263-1275, 2002.
[35] K. Kordesch and W. Taucher-Mautner, "CHEMISTRY, ELECTROCHEMISTRY, AND ELECTROCHEMICAL APPLICATIONS | Manganese A2 - Garche, Jürgen," in Encyclopedia of Electrochemical Power Sources, ed Amsterdam: Elsevier, 2009, pp. 784-795.
[36] Kirk-Othmer Encyclopedia of Chemical Technology(4th Edition), vol. 15.
[37] S. G. Bratsch, "Standard electrode potentials and temperature coefficients in water at 298.15 K," Journal of Physical and Chemical Reference Data, vol. 18, pp. 1-21, 1989.
[38] B. O. Ariyanto, "Mineralization of Organic Acid in the presence of MnCl2 by Electrochemical Oxidation Method," Master, Chemical. Engineering., cheng kung university, 2012.
[39] H. S. Posselt, F. J. Anderson, and W. J. Weber, "Cation sorption on colloidal hydrous manganese dioxide," Environmental Science & Technology, vol. 2, pp. 1087-1093, 1968.
[40] S. Devaraj and N. Munichandraiah, "Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties," The Journal of Physical Chemistry C, vol. 112, pp. 4406-4417, 2008.
[41] M. Musil, B. Choi, and A. Tsutsumi, "Morphology and Electrochemical Properties of α-, β-, γ-, and δ-MnO2 Synthesized by Redox Method," Journal of The Electrochemical Society, vol. 162, pp. A2058-A2065, 2015.
[42] 郭学益, 刘海涵, 李栋, 田庆华, and 徐刚, "二氧化锰晶型转变研究," 矿冶工程, vol. 27, pp. 50-53, 2007.
[43] 史艳华 and 孟惠民, "IrO2 基体上阳极电沉积 MnO2 的电化学行为 [J]," 物理化学学报, 2011.
[44] 陈野, 赵文丽, and 温青, "阳极电沉积 Ti/MnO2 电极及其苯酚降解的电催化性能," 电化学, vol. 17, pp. 199-203, 2011.
[45] P. Ruetschi, "Influence of cation vacancies on the electrode potential of MnO2," Journal of The Electrochemical Society, vol. 135, pp. 2657-2663, 1988.
[46] P. Ruetschi, "Cation‐Vacancy Model for MnO2," Journal of the Electrochemical Society, vol. 131, pp. 2737-2744, 1984.
[47] J. Chen, W.-D. Zhang, and J.-S. Ye, "Nonenzymatic electrochemical glucose sensor based on MnO 2/MWNTs nanocomposite," Electrochemistry Communications, vol. 10, pp. 1268-1271, 2008.
[48] J. Lee, W. Maskell, and F. Tye, "The electrochemical reduction of manganese dioxide in acidic solutions: Part I. Voltammetric peak 1," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 79, pp. 79-104, 1977.
[49] J. Lee, W. Maskell, and F. Tye, "The electrochemical reduction of manganese dioxide in acidic solutions: Part III. voltammetric peak 3," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 110, pp. 145-158, 1980.
[50] J.-P. Petitpierre, C. Comninellis, and E. Plattner, "Oxydation Du MnSO 4 en dioxyde de manganese dans H 2 SO 4 30%," Electrochimica Acta, vol. 35, pp. 281-287, 1990.
[51] R. Paul and A. Cartwright, "The mechanism of the deposition of manganese dioxide: Part II. Electrode impedance studies," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 201, pp. 113-122, 1986.
[52] W.-H. Kao and V. Weibel, "Electrochemical oxidation of manganese (II) at a platinum electrode," Journal of applied electrochemistry, vol. 22, pp. 21-27, 1992.
[53] R. G. Selim and J. J. Lingane, "Coulometric titration with higher oxidation states of manganese: Electrolytic generation and stability of+ 3 manganese in sulfuric acid media," Analytica Chimica Acta, vol. 21, pp. 536-544, 1959.
[54] R. Paul and A. Cartwright, "The mechanism of the deposition of manganese dioxide: part III. Rotating ring-disc studies," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 201, pp. 123-131, 1986.
[55] S. Nijjer, J. Thonstad, and G. Haarberg, "Oxidation of manganese (II) and reduction of manganese dioxide in sulphuric acid," Electrochimica acta, vol. 46, pp. 395-399, 2000.
[56] S. Rodrigues, A. Shukla, and N. Munichandraiah, "A cyclic voltammetric study of the kinetics andmechanism of electrodeposition of manganese dioxide," Journal of applied electrochemistry, vol. 28, pp. 1235-1241, 1998.
[57] M. P. Owen, G. A. Lawrance, and S. W. Donne, "An electrochemical quartz crystal microbalance study into the deposition of manganese dioxide," Electrochimica acta, vol. 52, pp. 4630-4639, 2007.
[58] Z. Rogulski, H. Siwek, I. Paleska, and A. Czerwiński, "Electrochemical behavior of manganese dioxide on a gold electrode," Journal of Electroanalytical Chemistry, vol. 543, pp. 175-185, 2003.
[59] J. L.G. Wade, ORGANIC CHEMISTRY: PEARSON EDUCATION.
[60] P. Y. Bruice, Organic Chemistry: person education.
[61] M. Ferreira, M. Pinto, O. Soares, M. Pereira, J. Órfão, J. Figueiredo, et al., "The electrochemical mineralization of oxalic and oxamic acids using modified electrodes based on carbon nanotubes," Chemical engineering journal, vol. 228, pp. 374-380, 2013.
[62] T. A. Ivandini, T. N. Rao, A. Fujishima, and Y. Einaga, "Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes," Analytical chemistry, vol. 78, pp. 3467-3471, 2006.
[63] M. Panizza, E. G. Araújo, E. V. Santos, D. R. da Silva, N. S. Fernandes, and C. A. Martínez-Huitle, "Applicability of electroanalysis for monitoring oxalic acid (OA) concentration during its electrochemical oxidation at different electrode materials," Electrocatalysis, vol. 4, pp. 267-273, 2013.
[64] O. Scialdone, S. Randazzo, A. Galia, and G. Filardo, "Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO 2–Ta 2 O 5 (DSA-O 2) anode," Electrochimica Acta, vol. 54, pp. 1210-1217, 2009.
[65] Y.-H. Huang, Y.-J. Shih, and C.-H. Liu, "Oxalic acid mineralization by electrochemical oxidation processes," Journal of hazardous materials, vol. 188, pp. 188-192, 2011.
[66] Y.-J. Huang and W.-S. Li, "Preparation of Manganese Dioxide for Oxygen Reduction in Zinc Air Battery by Hydro thermal Method," 无机材料学报, vol. 28, 2013.
[67] S. Garcia-Segura and E. Brillas, "Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode," Water research, vol. 45, pp. 2975-2984, 2011.
[68] G. Davies, "Some aspects of the chemistry of manganese (III) in aqueous solution," Coordination Chemistry Reviews, vol. 4, pp. 199-224, 1969.
[69] H. Petrucci, Herring, and Madura, General Chemistry: Principles and Modern Applications. Upper Saddle River, New Jersey: Pearson Education, 2007.
[70] C.-H. Kim, Z. Akase, L. Zhang, A. H. Heuer, A. E. Newman, and P. J. Hughes, "The structure and ordering of ε-MnO 2," Journal of Solid State Chemistry, vol. 179, pp. 753-774, 2006.
[71] R. Abdur, K. Kim, J.-H. Kim, and J. Lee, "Electrochemical behavior of manganese oxides on flexible substrates for thin film supercapacitors," Electrochimica Acta, vol. 153, pp. 184-189, 2015.
[72] M. Meng, S. Wu, L. Ren, W. Zhou, Y. Wang, G. Wang, et al., "Enlarged Mn 3s splitting and room-temperature ferromagnetism in epitaxially grown oxygen doped Mn2N0. 86 films," Journal of Applied Physics, vol. 116, p. 173911, 2014.
[73] J.-J. Shim, "In situ growth of hierarchical mesoporous NiCo 2 S 4@ MnO 2 arrays on nickel foam for high-performance supercapacitors," Electrochimica Acta, vol. 166, pp. 302-309, 2015.
[74] D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, and C. D. Lokhande, "Conversion of chemically prepared interlocked cubelike Mn3O4 to birnessite MnO2 using electrochemical cycling," Journal of the Electrochemical Society, vol. 157, pp. A812-A817, 2010.
[75] A. Shchukarev and D. Korolkov, "XPS Study of group IA carbonates," Open Chemistry, vol. 2, pp. 347-362, 2004.
[76] D. Jaganyi, M. Altaf, and I. Wekesa, "Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature," Applied Nanoscience, vol. 3, pp. 329-333, 2013.
[77] C. Chen, C. Lai, M. Liang, and C. Hsu, "The study of citric acid decomposition in a supercritical water oxidation system," in Proceedings of the Air and Waste Management Association’s Annual Meeting and Exhibition, p. 97th.