簡易檢索 / 詳目顯示

研究生: 吳施慶
Wu, Shih-Ching
論文名稱: 半導體機台腔體用鋁基板:電漿熱熔射氧化釔與氟氧化釔及Al-Ta合金塗層界面特性和顆粒沖蝕磨耗行為研究
Applications of Al substrate for chamber of semiconductor:characteristics of interface and behavior of particle erosion of Y2O3, YOF and Al-Ta alloy thermal plasma sprayed layers
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: 塗層電漿熱熔射氧化釔氟氧化釔鋁鉭合金顆粒沖蝕磨耗熱衝擊
外文關鍵詞: Coatings, Plasma spray, Yttrium oxide, Yttrium oxyfluoride, Al-Ta alloy, Particle erosion, Thermal shock
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今半導體製程的蝕刻機台腔體氧化鋁和PVD機台腔體純鋁防護層材料對於離子轟擊皆有防護性不足的問題,且在機台腔體開啟和關閉間也有高低溫循環造成塗層熱衝擊效應的挑戰,故本研究利用電漿熱熔射製程,導入氧化釔、氟氧化釔和鋁鉭合金塗層取代現有的氧化鋁和純鋁塗層,基材選擇5052鋁合金,從而針對塗層微觀組織、機械性質、顆粒沖蝕磨耗性質和熱衝擊性質進行探討。
    根據實驗結果,在陶瓷塗層的部分,氧化釔和氟氧化釔塗層皆有隨著功率條件提高,塗層孔隙率愈低趨勢,但對於塗層相結構和結晶度無明顯差異。在機械性質方面,氧化釔塗層硬度和鍵結強度優於氟氧化釔,對於耐顆粒沖蝕磨耗性則差距不大。在塗層抗熱衝擊性比較下,孔隙率較低的氟氧化釔塗層有較佳塗層抗熱衝擊性,故在未來隨著尺寸逐漸限縮趨勢下,氟氧化釔在高功率條件,相較於氧化釔和氧化鋁有較好的腔體防護特性。
    在合金塗層部分,鉭元素微量添加,塗層相結構和微觀組織並無差異,又塗層和基材材料性質相似,使得合金塗層抗熱衝擊性無顯著差異。在塗層機械性質和耐顆粒沖蝕磨耗性方面,鉭元素添加在鋁基地,除了可增進塗層內聚強度之外,塗層耐顆粒磨耗性也有顯著提升,因此鋁鉭合金塗層相對於純鋁塗層有較佳腔體防護應用性。

    In this study, the aluminum oxide and the pure aluminum protective layer material of etching chamber and PVD chamber inner wall have insufficient protection against ion bombardment, and there are thermal cycling effect between the opening and closing of the chamber, so this study uses thermal plasma spray process to introduce yttrium oxide, yttrium oxyfluoride and Al-Ta alloy to replace aluminum oxide and pure aluminum coatings. Al 5052 alloy is used as substrate. The microstructure, mechanical properties, resistance of particle erosion and thermal shock of coatings are discussed.
    According to the experimental results, in the ceramic coating part, both yttrium oxide and yttrium oxyfluoride have a tendency to decrease the porosity of the coating with higher power conditions, but there is no significant difference in crystallinity of coating. In terms of mechanical properties, hardness and bonding strength of yttrium oxide coatings are better than yttrium oxyfluoride, and there is not much difference in particle erosion. Yttrium oxyfluoride coating under high power conditions (F750) has better thermal shock resistance than the others. With the trend of gradually shrinking in size, yttrium oxyfluoride has better protection compared with yttrium oxide and aluminum oxide under high power conditions.
    In the alloy coating part, there are no difference in crystallinity and microstructure of coatings, and the coating (Al-Ta alloy) and substrate (Al 5052 alloy) materials have similar properties. Thermal shock resistance of coatings are not significantly different. In terms of mechanical properties and particle erosion, the addition of tantalum in aluminum matrix improves the cohesive strength and particle erosion of coating, so the Al-Ta alloy coating has better protection than pure aluminum coating.

    摘要 I 致謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 前言 1 第二章 文獻回顧 3 2-1 電漿熱熔射塗層技術發展 3 2-1-1 氧化釔塗層材料特性 3 2-1-2 氟氧化釔塗層材料特性 4 2-1-3 鋁鉭合金塗層材料特性 5 2-2 電漿熱熔射 6 2-2-1 電漿熱熔射原理 6 2-2-2 熔射參數對塗層性質之影響 7 2-3 電漿熱熔射塗層機械性質 9 2-4 塗層顆粒沖蝕磨耗性質 9 2-5 塗層抗熱衝擊性質 12 2-6 塗層基材之選擇 14 2-7 研究動機與目的 15 第三章 實驗方法 23 3-1 塗層試片製備 23 3-2 塗層微觀組織分析 24 3-2-1 塗層表面微觀組織特徵分析 24 3-2-2 塗層次表面微觀組織特徵分析 24 3-3 塗層硬度量測 24 3-4 塗層界面結合強度量測 25 3-5 塗層結晶特性分析 26 3-6 塗層顆粒沖蝕磨耗實驗 26 3-7 塗層抗熱衝擊實驗 27 第四章 結果與討論 36 4-1 塗層顯微組織特性 36 4-1-1 塗層表面形貌分析 36 4-1-2 塗層次表面微觀組織分析 36 4-1-3 塗層相結構XRD分析 37 4-2 塗層機械性質探討 38 4-2-1 塗層硬度探討 38 4-2-2 塗層界面結合強度量測 38 4-3 塗層顆粒沖蝕磨耗行為探討 39 4-3-1 塗層耐磨耗性探討 39 4-3-2 塗層沖蝕後表面與次表面形貌分析 40 4-4 塗層抗熱衝擊性探討 40 4-5 綜合討論 42 4-5-1 陶瓷塗層應用性 42 4-5-2 合金塗層應用性 43 第五章 結論 87 參考文獻 89

    [1] H. Herman, "Plasma-sprayed coatings," Scientific American, vol. 259, no. 3, 112-117, 1988.
    [2] M. Karger, R. Vaben, and D. Stöver, "Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior," Surface and Coatings Technology, vol. 206, no. 1, 16-23, 2011.
    [3] 楊永欽,殘留應力對電漿熔射氫氧基磷灰石塗層與鈦鋁釩合金基材間結合強度之影響研究,國立成功大學材料科學及工程研究所碩士論文,民國92年。
    [4] 陳育鈞,電漿熔射噴塗法製備固態氧化物燃料電池Ni/CeO2陽極之製程與性質探討,國立臺北科技大學材料科學與工程研究所碩士論文,民國99年。
    [5] C. Curtis, "Properties of yttrium oxide ceramics," Journal of the American Ceramic Society, vol. 40, no. 8, 274-278, 1957.
    [6] K. Schlichting, N. Padture, and P. Klemens, "Thermal conductivity of dense and porous yttria-stabilized zirconia," Journal of materials science, vol. 36, no. 12, 3003-3010, 2001.
    [7] K. Miwa, T. Sawai, M. Aoyama, F. Inoue, A. Oikawa, and K. Imaoka, "Particle reduction using Y2O3 material in an etching tool," International Symposium on Semiconductor Manufacturing: IEEE, 1-4, 2007.
    [8] H. Yanagida, K. Kōmoto, and M. Miyayama, "The chemistry of ceramics," John Wiley & Son Ltd, 1996.
    [9] J. C. Woo, G. H. Kim, D. P. Kim, D. S. Um, and C. I. Kim, "Improving the Etch Selectivity of ZrO2 Thin Films over Si by Using High Density Plasma," Ferroelectrics, vol. 384, no. 1, 47-55, 2009.
    [10] B. S. Choia, J. C. Park, J. W. Seo, S. C. Ryu, H. S. Lee, J. H. Ryu, and H. Cho, "High density plasma etching of YSZ thin film in halogen-based inductively coupled plasmas," Journal of Ceramic Processing Research, vol. 17, no. 8, 894-898, 2016.
    [11] Y. C. Cao, L. Zhao, J. Luo, K. Wang, B. P. Zhang, H. Yokota, Y. Ito, J. F. Li, "Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3," Applied Surface Science, vol. 366, 304-309, 2016.
    [12] Y. Shiba, A. Teramoto, T. Goto, Y. Kishi, Y. Shirai, and S. Sugawa, "Stable yttrium oxyfluoride used in plasma process chamber," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 35, no. 2, 021405, 2017.
    [13] T. K. Lin, D. S. Wuu, S. Y. Huang, and W. K. Wang, "Characteristics of yttrium fluoride and yttrium oxide coatings for plasma process equipment prepared by atmospheric plasma spraying," Japanese Journal of Applied Physics, vol. 55, no. 12, 126201, 2016.
    [14] T. K. Lin, D. S. Wuu, S. Y. Huang, and W. K. Wang, "Preparation and characterization of sprayed-yttrium oxyfluoride corrosion protective coating for plasma process chambers," Coatings, vol. 8, no. 10, 373, 2018.
    [15] J. Kitamura, H. Mizuno, N. Kato, and I. Aoki, "Plasma-erosion properties of ceramic coating prepared by plasma spraying," Materials transactions, vol. 47, no. 7, 1677-1683, 2006.
    [16] H. Mitsui, H. Habazaki, K. Hashimoto, and S. Mrowec, "The sulfidation and oxidation behavior of sputter-deposited Al-Ta alloys at high temperatures," Corrosion science, vol. 39, no. 1, 59-76, 1997.
    [17] V. Witusiewicz, A. A. Bondar, U. Hecht, J. Zollinger, V. M. Petyukh, O. S. Fomichov, V. M. Voblikov, and S. Rex, "Experimental study and thermodynamic re-assessment of the binary Al–Ta system," Intermetallics, vol. 18, no. 1, 92-106, 2010.
    [18] P. Subramanian, D. Miracle, and S. Mazdiyasni, "Phase relationships in the Al-Ta system," Metallurgical Transactions A, vol. 21, no. 2, 539-545, 1990.
    [19] C. J. S. Guest and K. G. Ford, "Process for plasma flame spray coating in a sub-atmospheric pressure environment," U. S. Patent No. 3,892,882, 1975.
    [20] F. Longo, "Second national conference on thermal spray," American Society for Metals, USA, 1984.
    [21] J. H. Clare and D. E. Crawmer, "Thermal Spray Coatings'," Metals Handbook, vol. 15, 1982.
    [22] Y. Qin, L. Zhu, J. He, F. Yin, and Z. Nan, "Effect of powder injection distance on microstructure and mechanical properties of reactive plasma sprayed TiCN coatings," Surface and Coatings Technology, vol. 329, 131-138, 2017.
    [23] 林永發,電漿熔射鋯基高熵合金塗層之顆粒沖蝕磨耗特性檢討,國立成功大學材料科學及工程研究所碩士論文,民國93年。
    [24] M. Jiang and M. Shkolnikov, "Sputter chamber shield," U. S. Patent No. 09/989,508, 2002.
    [25] S. J. Fonash, "An overview of dry etching damage and contamination effects," Journal of The Electrochemical Society, vol. 137, no. 12, 3885-3892, 1990.
    [26] H. Wang, Y. He, and C. C. Stow, "Method of cleaning a coated process chamber component," U. S. Patent No.6,902,628, 2005.
    [27] O. Vingsbo, "Wear and wear mechanisms," Wear of Materials, 620-635, 1979.
    [28] I. Finnie, "Erosion of surfaces by solid particles," Wear, vol. 3, no. 2, 87-103, 1960.
    [29] J. Bitter, "A study of erosion phenomena part I," Wear, vol. 6, no. 1, 5-21, 1963.
    [30] Y. Oka, H. Ohnogi, T. Hosokawa, and M. Matsumura, "The impact angle dependence of erosion damage caused by solid particle impact," Wear, vol. 203, 573-579, 1997.
    [31] S. Lathabai, M. Ottmüller, and I. Fernandez, "Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings," Wear, vol. 221, no. 2, 93-108, 1998.
    [32] K. H. Zum Gahr, Microstructure and wear of materials. Elsevier, 1987.
    [33] J. Neilson and A. Gilchrist, "Erosion by a stream of solid particles," Wear, vol. 11, no. 2, 111-122, 1968.
    [34] H. Reshetnyak and J. Kuybarsepp, "Mechanical properties of hard metals and their erosive wear resistance," Wear, vol. 177, no. 2, 185-193, 1994.
    [35] M. Liebhard and A. Levy, "The effect of erodent particle characteristics on the erosion of metals," Wear, vol. 151, no. 2, 381-390, 1991.
    [36] G. Sundararajan, "The solid particle erosion of metallic materials: the rationalization of the influence of material variables," Wear, vol. 186, 129-144, 1995.
    [37] G. Tilly, "Erosion caused by impact of solid particles," in Treatise on Materials Science & Technology, vol. 13: Elsevier, 287-319, 1979.
    [38] D. Chen, M. Sarumi, S. Al-Hassani, S. Gan, and Z. Yin, "A model for erosion at normal impact," Wear, vol. 205, no. 1-2, 32-39, 1997.
    [39] W. Adler, "Analytical modeling of multiple particle impacts on brittle materials," Wear, vol. 37, no. 2, 353-364, 1976.
    [40] R. Wellman and C. Allen, "The effects of angle of impact and material properties on the erosion rates of ceramics," Wear, vol. 186, 117-122, 1995.
    [41] Y. I. Oka, M. Matsumura, and T. Kawabata, "Relationship between surface hardness and erosion damage caused by solid particle impact," Wear, vol. 162, 688-695, 1993.
    [42] H. Wensink and M. C. Elwenspoek, "A closer look at the ductile–brittle transition in solid particle erosion," Wear, vol. 253, no. 9-10, 1035-1043, 2002.
    [43] M. R. Ardigo, M. Ahmed, and A. Besnard, "Stoney formula: Investigation of curvature measurements by optical profilometer," in Advanced Materials Research, vol. 996: Trans Tech Publ, 361-366, 2014.
    [44] J. W. Hutchinson, "Stresses and failure modes in thin films and multilayers," Notes for a Dcamm Course. Technical University of Denmark, Lyngby, vol. 1, 1996.
    [45] W. Huang, Y. Zhao, X. Z. Fan, X. S. Meng, Y. Wang, X. L. Cai, X. Q. Cao, and Z. Wang, "Effect of bond coats on thermal shock resistance of thermal barrier coatings deposited onto polymer matrix composites via air plasma spray process," Journal of thermal spray technology, vol. 22, no. 6, 918-925, 2013.
    [46] J. Kováčik, "Correlation between Young's modulus and porosity in porous materials," Journal of materials science letters, vol. 18, no. 13, 1007-1010, 1999.
    [47] H. Guo, R. Vaben, and D. Stöver, "Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings," Surface and Coatings Technology, vol. 192, no. 1, 48-56, 2005.
    [48] H. Jamali, R. Mozafarinia, R. S. Razavi, and R. Ahmadi-Pidani, "Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings," Ceramics International, vol. 38, no. 8, 6705-6712, 2012.
    [49] A. N. Khan and J. Lu, "Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling," Surface and Coatings Technology, vol. 166, no. 1, 37-43, 2003.
    [50] B. Liang and C. Ding, "Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying," Surface and Coatings Technology, vol. 197, no. 2-3, 185-192, 2005.
    [51] F. Zhou, Y. Wang, L. Wang, Z. Cui, and Z. Zhang, "High temperature oxidation and insulation behavior of plasma-sprayed nanostructured thermal barrier coatings," Journal of Alloys and Compounds, vol. 704, 614-623, 2017.
    [52] L. Zhang et al., "Performance of plasma-sprayed thermal barrier coating with engineered unmelted nano-particle contents," Surface and Coatings Technology, vol. 368, 67-78, 2019.
    [53] Y. Wang, W. Tian, and Y. Yang, "Thermal shock behavior of nanostructured and conventional Al2O3/13 wt% TiO2 coatings fabricated by plasma spraying," Surface and Coatings Technology, vol. 201, no. 18, 7746-7754, 2007.
    [54] S. Ghosh and V. Kain, "Microstructural changes in AISI 304L stainless steel due to surface machining: Effect on its susceptibility to chloride stress corrosion cracking," Journal of nuclear materials, vol. 403, no. 1-3, 62-67, 2010.
    [55] I. Polmear, "Light alloys: Metallurgy of the light metals//(Book)," London and New York, Edward Arnold, 1989.
    [56] A. Association, Aluminum: properties and physical metallurgy. ASM international, 1984.
    [57] A. Mishra, "Friction Stir Welding of Dissimilar Metal: A Review," International Journal for Research in Applied Science & Engineering Technology, vol. 887, 2018.
    [58] B. Irving, "Welding the four most popular aluminum alloys," Welding Journal (Miami);(United States), vol. 73, no. 2, 1994.
    [59] 劉中偉,片狀石墨鑄鐵與鋁-矽系合金之矽砂沖蝕磨耗特性研究,國立成功大學材料科學及工程研究所博士論文,民國87年。
    [60] Kyocera corporation, "Characteristics of Kyocera fine ceramics," 2020.
    [61] R. Tahara, T. Tsunoura, K. Yoshida, T. Yano, and Y. Kishi, "Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties," Japanese Journal of Applied Physics, vol. 57, no. 6S2, 06JF04, 2018.
    [62] W. Leini, T. Zhang, Z. Wu, and N. Wei, "First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al-Ta compound under high pressure," arXiv:1803.11412, 2018.
    [63] 謝水生、劉靜安 編著,鋁合金材料應用與開發,冶金工業出版社, 2011。
    [64] G. Alcala, S. Mato, P. Skeldon, G. E. Tompson, P. Bailey, T. C. Q. Noakes, H. Habazaki, K. Shimizu, "Anodic film growth in the Al–Ta alloy system," Corrosion science, vol. 45, no. 8, 1803-1813, 2003.
    [65] E. Iwamura, T. Ohnishi, and K. Yoshikawa, "A study of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs," Thin Solid Films, vol. 270, no. 1-2, 450-455, 1995.
    [66] M. Takeyama, A. Noya, M. Taguchi, T. Ichikawa, and K. Sasaki, "Oxidation characteristics of Al-Ta thin alloy films as a passivation layer on Cu," Japanese journal of applied physics, vol. 35, no. 2R, 704, 1996.

    下載圖示 校內:2025-07-02公開
    校外:2025-07-02公開
    QR CODE