簡易檢索 / 詳目顯示

研究生: 周沅錞
Chou, Yuan-Chuan
論文名稱: 燒結條件對鐵礦泥鐵氧磁體化之影響
Influence of Sintering Condition on ferrite Process of Blast Furnace Slurry
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 132
中文關鍵詞: 燒結條件鐵礦泥鐵氧磁體化晶相半定量分析(QXRD)
外文關鍵詞: Quantitative X-ray Diffraction analysis (QXRD), Ferrite process, Blast Furnace slurry, Sintering condition
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵礦泥為鋼鐵業高爐製程空氣污染防治設備之洗塵水副產物,因鐵、碳含量高利於替代廠內製程生料使用,但因含微量鉛、鋅使得用量有所限制。然而,鐵為鐵氧磁體之基材,且碳可於惰性環境下促使鐵礦泥還原轉化為鐵氧磁體,使鐵礦泥具有鐵氧磁體化之潛勢。本研究主要藉由XRD晶相定性及半定量等分析探討燒結氣氛、溫度及持溫時間等燒結條件對於鐵礦泥進行鐵氧磁體化之影響。
    鐵礦泥於空氣氣氛下,當燒結溫度由600ºC逐漸增加至900ºC,由XRD晶相半定量分析觀察得α-Fe2O3晶相相對強度持續增加,得知鐵礦泥隨溫度增加而持續進行氧化反應。於氮氣氣氛下,鐵礦泥因含碳量高,有助於爐內形成還原環境,當燒結溫度增加為700ºC~800ºC,鐵礦泥燒結產物之Fe3O4晶相相對強度可得最大值;但隨著溫度及持溫時間增加,Fe3O4晶相相對強度開始下降,FeO晶相相對強度則開始增加,得知鐵礦泥隨溫度及持溫時間增加而持續進行還原反應。歸納實驗結果可知,使用含碳量較低之鐵礦泥壓錠後進樣,於氮氣環境下800ºC燒結五小時,為鐵礦泥轉化為鐵氧磁體之最佳操作條件。
    鐵礦泥經鐵氧磁體化程序,除可產出具有磁性及吸附性等特性之資材化物質,並可富集回收含有Zn及Pb等重金屬之析出物,可增進鐵礦泥再利用潛勢,提供鐵礦泥另一多元資材化方向。

    Blast furnace (BF) slurry, a solid by-product with high iron and carbon contents, could originally be recycled in the steel making process. Limited that the zinc and lead contents might evaporate in elevated temperature; the recycling of BF slurry is constrained. Nevertheless, iron content in BF slurry is basic material of ferrite, and carbon could provide reduced atmosphere and convert iron to ferrite in high temperature ferrite process. In this study, quantitative X-ray diffraction analysis was performed to investigate the influence of sintering conditions including atmosphere, sintering temperature and isothermal time on the ferrite process of BF slurry.
    When the sintering temperature was increased from 600ºC to 900ºC under air atmosphere, Relative Intensity to Reference (RIR) of α-Fe2O3 in sintered BF slurry increased accordingly. The result supports that the oxide number of iron oxide is raised under the air atmosphere during the sintering process. On the other hand, as the sintering temperature was in the range from 700ºC to 800ºC under nitrogen atmosphere, the RIR of Fe3O4 reached maximum value. Afterward, as the temperature or the isothermal time was further increased, the RIR of FeO increased and the RIR of Fe3O4 decreased. The results indicate that the oxide number is reduced in elevated temperatures under the reduced atmosphere created by carbon in BF slurry and nitrogen atmosphere. Summarized from the experiments performed, the optimal sintering condition for ferrite process of the BF slurry is palletized sintering at 800 ºC for 5 hours under nitrogen atmosphere.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅸ 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1鐵礦泥來源及特性 3 2-1-1鐵礦泥之來源 3 2-1-2含鐵礦泥處置及再利用情形 6 2-2鐵氧化物相關特性及應用 9 2-2-1 鐵氧化物之構造 9 2-2-2鐵氧化物之磁性特性 13 2-2-3鐵氧化物之應用 15 2-3鐵氧磁體之晶體結構與合成方法 18 2-3-1鐵氧磁體合成方法 25 2-4燒結條件對於鐵礦泥鐵氧磁體化之影響 29 2-4-1氣氛之影響 30 2-4-2溫度及持溫時間之影響 36 2-5 小結 40 第三章 實驗材料、設備與方法 43 3-1 研究架構及實驗流程 43 3-2實驗材料及設備 45 3-2-1實驗材料 45 3-2-2實驗使用設備 45 3-3 實驗方法 50 3-3-1鐵礦泥之樣品前處理 50 3-3-2鐵氧磁體化程序 50 3-3-3產物特性分析 51 第四章 實驗結果與討論 57 4-1鐵礦泥基本特性分析 57 4-1-1鐵礦泥元素組成近似分析 57 4-1-2鐵礦泥XRD晶相分析結果 59 4-1-3鐵礦泥TGA分析結果 59 4-1-4小結 64 4-2溫度對鐵礦泥之鐵氧磁體化影響 65 4-2-1鐵礦泥於空氣氣氛之鐵氧磁體化影響 65 4-2-2鐵礦泥於氮氣環境之鐵氧磁體化影響 75 4-2-3小結 87 4-3持溫時間對鐵礦泥於氮氣環境下燒結生成物之影響 88 4-3-1持溫時間對鐵礦泥物種生成之影響 88 4-3-2鐵礦泥於氮氣環境下鐵氧磁體化過程之析出物 100 4-3-3持溫時間對鐵礦泥對Fe3O4生成之影響 104 4-3-4 鐵礦泥燒結產物Fe3O4應用特性初探 106 4-3-5小結 109 第五章 結論與建議 111 5-1結論 111 5-2建議 112 參考文獻 113

    參考文獻
    Ahmed, M.A., Alonso, L., Palacios, J.M., Cilleruelo, C., Abanades, J.C., 2000. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization, Sol. Sta. Ion., v138, pp. 51-62.
    Allah, S.SA., Fayek, M.K., 2000. Effect of Cu substitution on conductivity of Ni-Al ferrite, J. Phy. Chem. Sol., v61, pp. 1526-1534.
    Bissett, L.A. and Strickland, L.D., 1991. Analysis of a Fixed-Bed Gasifier IGCC Configuration, Ind. Eng. Chem. Res, v30, pp.170-179.
    Bandopadhyay, A., Ganguly, A., Prasad, K.K., Sarkar, S.B. and Ray, H.S., 1989. Thermogravimetric Studies on the Reoxidation of Direct Reduced Iron at High Temperatures, ISIJ Int., v29(9), pp.753-760.
    Bigham, J.M., Fritzpatrick, R.W., Schulze, D.G., Dixon, J.B., Schulze, D.G., Ristic, M., Hannoyer, B., Popovic, S., Music, S., Bajraktaraj, N., 2000. Ferritization of copper ions in the Cu-Fe-O system, Mat. Sci. Eng., B77, pp. 73-82.
    Bian P. and Ju, D.Y., 2004. A New Low-Temperature Sintering Method and Characteristic Evaluation of Ferrite Magnetic Materials, J. Mater. Sci. Technol., v20(1), pp.108-110.
    Caizer, C., Stefanescu, M., 2002. Magnetic characterization of nanocrystalline Ni-Zn ferrit powder prepared by the glyoxylate precursor method, J. Phys. D: Appl. Phys. v35, pp. 3035-3040.
    Camci, L., Aydin, S., Arslan, C., 2002. Reduction of Iron Oxides in Solid Wastes Generated by Steelworks, Turkish J. Eng. Env. Sci., v26, pp. 37-44.
    Campbell, S.J., Kaczmarek W.A. and Wang, G-M, 1995. Mechanochemical Transformation of Haematite to Magnetite, NSM., v6, pp.735-738.
    Choi, Y., Cho, N.I., Kim, H.C., Hahn, Y.D., 2000. Magnetic properties of Ni-Zn ferrite powders formed by self-propagating high temperature synthesis reaciton, J. mater. sci., Mater. electron., v11(1), pp. 25-30.
    Delgado, A.L., Martin de Vidales J.L., Vila, E, F. Lopez, A., 1998. Synthesis of mixed ferrite with spinel-type structure from a stainless steelmaking solid waste, J. Alloys and Compounds , v281, pp. 312-317.
    Danielsen, K.M. and Hayes, K.F., 2004. PH Dependence of Carbon Tetrachloride Reductive Dechlorination by Magnetite, Env. Sci. Tec., v38(3), pp. 4745-4752.
    Folhueras, M. B., Díaz, R.M., Xiberta, J., 2004. Sulphur retention duting co-combustion of coal and sewage sludge, FUEL, v83, pp. 1315-1322.
    Gonzalez, C.G, Vicente, J.D, Tejada, M.M.R., Lopez, M.T.L., Caballero, F.G. and Duran, J.D.G., 2005. Preparation and Sedimentation Behavior in Magnetic Fields of Magnetite-Covered Clay Particles, Langmuir, v21, pp. 4410-4419.
    Guaita, F. J., Beltran, H., Cordoncillo, E., Carda, J.B. and Escribano, P., 1999. Influence of the Precursors on the Formation and the Properties of ZnFe2O4, J. Euro. Ceramic Society, v19, pp. 363-372.
    Gupta, S., Sahajwalla, V., Burgo, J., Chaubal, P. and YoumansS, T., 2005. Carbon Structure of Coke at High Temperatures and Its Influence on Coke Fines in Blast Furance Dust, Metall. Mater. Trans., v35B, pp. 385-394.
    Hamdeh, H.H., Ho, J.C., Oliver, S.A., Willey, R.J., Kramer, J., Chen, Y.Y., Lin, S.H., Yao, Y.K., Daturi, M. and Busca, G., 1995. Ferrimagnetic Zinc Ferrite Fine Powders, IEEE trans. magn., v31(6), pp. 3808.
    Hideki, O.N., Tsubone, Y. and Usui, T., 2002. Gaseous Reduction Behavior of Powdered Iron Ore Sinter and Analysis on the Basis of Rist Model for Fixed Bed, ISIJ Int., v42(5), pp. 482-488.
    Hu, J., C., I.M. and Chen, G., 2004. Removal Cr(VI) by Magnetite Nanoparticles, Water Sci. Technol., v150(12), pp. 139-146.
    Hsieh, L.H. and Whitwman, J.A., 1989. Effect of Oxygen Potential on Mineral Formation in Lime-fluxed Iron Ore Sinter, ISIJ Int., v29(8), pp. 625-634.
    Hsieh, L.H. and Whiteman, J.A., 1989. Sintering Conditions for Simulating the Formation of Mineral Phases in Industrial Iron Ore Sinterr, ISIJ Int., v29(1), pp. 24-32.
    Hatashi S. and Iguchi, Y., 1997. Iron Carbide Synthesis by Reaction of Iron Ore with H2-CH4 Gas Mixtures Contering Traces of Sulfur, ISIJ Int., v37(4), pp.345-349.
    Illés, E., Tombácz, E., Colloids and A, S., 2004. The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite, Colloids and Surfaces. A, Physicochemical and Engineering Aspects, v 230, pp. 99-109.
    Illés, E., Tombácz, E., 2006. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, J. Colloid Interface Sci., v 295, pp. 115-123.
    Iguchi Y. and Takada, Y., 2004. Rate of Direct Reactions Measured in Vacuum of Iron Ore-Carbon Composite Pellets Heated at High Temperatures: Influence of Carbonaceous Materials , Oxidation Degree of Iron Oxides and Temperature, ISIJ Int., v44(4), pp. 673-681.
    Karamanov, A., Pisciella, P., Cantalini, C. and Pelino, M., 2000. Influence of Fe3+/Fe2+ Ratio on the Crystallization of Iron-Rich Glasses Made with Industrial Wastes, J. Am. Ceram. Soc., 83(12), pp. 3153-3157.
    Kazinczy, B., Kótai, L., Sajó, I.E., Holly, S. K., Jakab, E. I, G, and Szentmihályi, K., 2002. Phase Relations and Heat-Induced Chemical Processes in Sludge of Hot-Dip Galvanization, Ind. Eng. Chem. Res., v41, pp. 720-725.
    Kazinczy, B., Kótai, L., Gács, I., Sajó, I.E., Sreedhar, B. and Lázár, K., 2003. Study of the Preparation of Zinc(II) Ferrite and ZnO from Zinc- and Iron-Containing Industrial Wastes, Ind. Eng. Chem. Res. v42, pp. 318-322.
    Kang, H.W., Chung W.S. and Muryama, T., 1998. Effect of Iron Ore Size on Kinetics of Gaseous Reduction, ISIJ Int., v38(2) pp. 109-115.
    Karapinar, N., 2003. Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation, Int. J. Miner. Process, v71, pp. 45-54.
    Kawatra, S.K., Ripke, S.J., 2003. Sintering of magnetite pellets under oxidizing, neutral and reducing atmospheres, Miner. Metall. Process., v20(4), pp.165-170.
    Kamiyama, T., Haneda, K., Sato, T., Ikeda S. and Asano, H., 1992. Cation Distribution in ZnFe2O4 Fine Particles Studied by Neutron Powder Diffraction, Sol. Sta. Com., v81(7), pp. 563-566.
    Kodama, T., Watanabe, Y., Miura, S., Sato M. and Kitayama, Y., 1996. Reactive and Selective Redox System of Ni(II)-ferrite for a Two-step CO and H2 Production Cycle from Carbon and Water, Energy, v21(12), pp. 1147-1156.
    Loo, C.E., Matthews, L.T., England, B.M., Yang C.Y. and Yin, J.Y., 1995. Sintering reactions between a complex Chinese iron ore concentrate and Australian ores, Inst. Min. Metall., Trans. C, v104, C70-C80.
    Li, P., Yu, Bo., Wei, X., 2004. Synthesis and Characterization of a High Oil-Absorbing Magnetic Composite Material, J. Appl. Polym. Sci., v93, pp.894-900.
    Li, X., Lu, G. and Li, S., 1996. Synthesis and characterization of fine particle ZnFe2O4 powders by a low temperature method, J. Alloys Compd. v235, pp.150-155.
    Li, Y., Zhao, J., Han, J. and He, X., 2005. Combustion synthesis and characterization of NiCuZn ferrite powders, Materl Res. Bull. , v40, pp. 981-989.
    Mishra, B., Staley, A., Kirkpatrick, D., 2002. Recovery of value-added products form red mud, Min. Met. Pro., v19(2) , pp. 87-94.
    Manning, B.A., Hunt, M.L., Amarhein, C. and YARMOFF, J.A., 2002. Arsenic(III) and Arsinic(V) Reactions with Zerovalint Iron Corrosion Products, Environ. Sci. Technol, v36, pp. 5455-5461.
    Mangalaraja, R.V., Anathakumar, S., Manohar, P., Gnanam, F.D., 2003. Initial permeability studies of Ni-Zn ferrites prepared by flash combustion technique, Mater. sci. eng. A355, pp. 320-324.
    Ni, H.W., Chang, D.Q. and Jiang, J.P., 2001. Preparation of Iron Carbide from Magnetite Pellets by CO-H2 Mixtures Reduction, Acta Metall. Sin., v14(4), pp. 280-284.
    Nagata, K., Kojima, R., Murakami, T., Susa M. and Fukuyama, H., 2001. Mechanisms of Pig-iron Making from Magnetite Ore Pellets Containing Coal at Low Temperature, ISIJ Int., v41(11), pp. 1316-1323.
    Nasr M.I. and Youssef, M.A., 1996. Optimization of Magnetizing Reduction and Magnetic Separation of Iron Ores by Experimental Design, ISIJ Int., v36(6), pp. 631-639.
    Niu, X., Du, W., Weimin, 2004. Preparation and gas sensing properties of ZnM2O4 (M=Fe, Co, Cr), Sens. actuators.B 99, pp. 405-409.
    Ohe, K., Tagai, Y., Nakamura, S., Oshima, T. and Baba, Y., 2005. Adsorption Behavior of Arsenic(III) and Arsenic(V) Using Magnetite, J. Chemical of Japan, v38(8), pp. 671-676.
    Polushkin, M. E., Lekin, V.P., Yusupov, R.B., Gladskikh, V. I. and Kim, T. F., 2004. Using Metallurgical Slurry in Sintering, Steel in Translation, v34(12), pp.1-5.
    Peng, X., Luan, Z., Di, Z., Zhang, Z. and Zhu, C., 2005. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water, Chunlei Source: carbon, v43, pp.880-883.
    Rfferty, A., Gun’ko, Y., Raghavendra, R., 2004. An investigation of co-fired varistor-ferrite materials, J. Euro. Cera. Soci., v24, pp. 2005-2013.
    Ravinder, D., Reddy, K.S., Mahesh, P., Rao, T.B., Venudhar, Y.C., 2004. Electrical conductivity of chromium substituted copper ferrites, J. Alloys Compd., v370, L17-L22.
    Rashad, M.M., Fouad, O.A., 2005. Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO, Mat. Che. Phy., v94, pp. 365-370.
    Rashad, M.M., 2006. Synthesis and magnetic properties of manganese ferrite from low grade manganese ore, Mat. Sci. Eng. B, v127, pp. 123-129.
    Rongcheng, W., Jiuhui, Q., 2004. Removal of Azo Dye from Water by Magnetite Adsorption-Fenton Oxidation, Water Environ. Res., v76(7), pp. 2637-2642.
    Sun, A. C., Kuo, P. C., Chou, C.Y., Chen, S. C., Lie, C.T., Lin, M.H., Chen, J.W., Huang, H.L., 2004 Magntoresistance of sintered(Fe2O3)100-x(Fe3O4)X ferrites, J. Mag. Magne. and magnetic materials, v272-276, pp. 1776-1777.
    Seki, I. and Nagata, K., 2006. Reduction Kinetics of Hematite Powder Mechanically Milled with Graphite, ISIJ Int., v46(1), pp. 1-7.
    Shigematsu, N. and Iwai, H., Effect of CaO Added with SiO2 and/or Al2O3 on Reduction Rate of Dense Wustite by Hydrogen, ISIJ Int., v29(6), pp. 486-494.
    Sobrinho, P.J.N., Espinosa, D.C.R. and Tenório, J.A.S., 2003. Characterisation of dusts and sludges generated during stainless steel production inBrazilian industries, Ironmaking and Steelmaking, v30(1), pp.11-17.
    Sun, S. and Lu, W.K., 1999. Building of a Mathematical Model for the Reduction of Iron Ore in Ore/Coal Composites, ISIJ Int. , v39, pp30-138.
    šepelák, V., Steinike, U., Uecker, D.C., Trettin, R., Wibmann, S., Becker, K.D., 1997. High-temperature reactivity of mechanosynthesized zinc ferrite, Sol. Sta. Ion., v101-103, pp.1343-1349.
    Tay, J.H., Show, K.Y., Hong, S.Y., Chien, C.Y. and Lee, D.J., 2003. Thermal Stabilization of Iron-Rich Sludge for High Strength Aggregates, J. Mater. Civ. Eng., v15(6), pp. 577-585.
    Tay, J.H., Show, K.Y., 1997. Resource Recovery of Sludge as A Building and Construction Material- A Future Trend in Sludge Management, Wat. Sci. Tech. v36(11), pp. 259-266.
    Thurnhofer, A., Schachinger, M., Winter, E., Mali H. and Schenk, J. L., 2005. Iron Ore Reduction in a Laboratory-scale Fluidized Bed Reactor-Effect of Pre-reduction on Final Reduction Degree, ISIJ Int., v45(2), pp.151-158.
    Tamura, M. and Tokunaga, T., 1999. Reduction of Iron-Silicon-Oxysulfide by CO Gas Injection, Metal. Mater. Trans. B., v30, pp. 873-875.
    Tao, S., Gao, F., Liu, X., Sorensen, O. T., 1997. Preparation and gas-sensing preperties of CuFe2O4 at reduced temprature , Mate. Sci. Eng., B 77, pp.172-176.
    Tamaura, Y., Katsura, T., Rojarayanont, S., Yoshida T. and Abe, H., 1991. Ferrite Process; Heavy Metal Ions Treatment System, Wat. Sci. Tech., v23, pp.1893-1900.
    Usui, T., Ohime, M., kaneda, S., Ohmasa M. and Mofita. Z.I., 1991. Re-examination of Method of Analysis on the Rate of Stepwise Reduction of a Single Sinter Particle with CO-CO2-N2 Gas Mixture, ISIJ Int., v31(5), pp. 425-433.
    Wang, Y., Linag, Z., Yuan, X. and Xu, Y., 2005. Preparation of Cellular Iron Using Wastes and its Application in Dyeing Wastewater treatment, J. Porous Mater., v12, pp. 225-232.
    Yang L.X. and Matthews, E.,1997. Oxidation and Sintering of Magnetite Ore under Oxidising Conditions, ISIJ Int., v37(9), pp. 854-861.
    Yang L.X. and Loo, C.E., 1997. Structure of Sinters Formed from Complex Chinese Iron Ores, ISIJ Int., v37(5), pp. 449-457.
    Yi, X., Yitai, Q., Jing, L., Zuyao, C. and Li, Y., 1995. Hydrothermal preparation and characterization of ultrafine powders of ferrite spinels MFe2O4(M=Fe, Zn and Ni), Mater. sci. eng. B, v34, pp. 1-3.
    Yue, Z., Guo, W., Zhou, J., Gui, Z., Li, L., 2004. Synthesis of nanocrystalline by sol-gel combustion process: the influence of pH value of solution, J. Magn. Magn. Mater., v270, pp. 216-223.
    Zhu, D., Pan, J., Qiu, G., Clout, John., Wang, Changan., Guo, Y. and Hu, C., 2004. Mechano-chemical Activation of Magnetite Concentrate for Improving Its Pelletability by High Pressure Roll Grinding, ISIJ Int., v44(2), pp. 310-315.
    粉末冶金學,2003,黃坤祥,中華民國粉末冶金協會。
    磁性技術手冊,1997,金重勳,中華民國磁性技術學會。
    機械材料(I)(II) ,1996,金重勳,復文書局。
    施百鴻,2005,含重金屬泥渣類廢棄物再利用於水泥矽酸鹽燒製之定量研究,國立成功大學環境工程研究所,博士論文。
    張簡旭珂,1999。水熱法合成錳鋅鐵氧磁體之粉體特性及燒結性之研究,國立成功大學材料科學及工程研究所碩士論文。
    張祉祥,2000。都市垃圾焚化底灰燒結資源化之研究,國立中央大學環境工程研究所碩士論文。
    楊士瑩,2001。黏結劑PVA對錳鋅鐵氧磁體粉末燒結及燒結體性質之影響,國立成功大學材料科學及工程研究所碩士論文。
    張翰青,2005。以重金屬廢水污泥產生之鐵氧磁體高溫去除H2S之吸收特性,國立成功大學環境工程研究所碩士論文。
    陳威倩,2001。以γ→α-Fe2O3相變機制製作α-Fe2O3微粒,國立成功大學資源工程研究所碩士論文。
    黃淑惠,2001。Sol-Gel法制備鑭系鈣鈦礦膜之磁阻特性,國立成功大學材料科學及工程研究所碩士論文。
    黃麟晴,2003。電子業含銅污泥鐵磁化法之研究,國立中山大學環境工程研究所碩士論文。
    黃重元,2005。鋅鐵氧磁體應用於二氧化碳甲烷化之研究,國立成功大學材料科學及工程學系碩士論文。
    鄭建星,1998。錳鋅鐵氧磁體之磁阻性質研究,國立成功大學材料科學及工程研究所碩士論文。

    下載圖示 校內:2007-08-11公開
    校外:2008-08-11公開
    QR CODE