| 研究生: |
林柏銓 Lin, Po-Chuan |
|---|---|
| 論文名稱: |
週期非線性薛丁格方程的爆破解 Blow-up of Solutions for the Nonlinear Schrödinger Equations with Periodic Boundary Condition |
| 指導教授: |
方永富
Fang, Yung-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 非線性薛丁格方程 、爆炸解 、固定點定理 |
| 外文關鍵詞: | Nonlinear Schrödinger equation, Blow-up solution, fixed point theorem |
| 相關次數: | 點閱:181 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文,我們回顧了兩篇關於週期非線性薛丁格方程及系統的爆破解的論文。第一篇論文是由 T. Ogawa 教授和 Y. Tsutsumi 教授共同所寫的”Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition” [17] 而第二篇論文是由 F. Ivanauskas 教授和 G. Puriuškis 教授共同所寫的”Blow-up of the solution of a nonlinear Schrödinger equation system with periodic boundary conditions” [8]。在這兩篇論文中,我們改進了他們的一些結果。我們獲得了包含更多初始值的條件使得解在有限時間內爆炸。在第一篇論文中還有寫到我們可以構造出爆炸解,這個想法來自 F. Merle 教授的類似擾動論點的方法 [15],我們使用固定點定理去證明修正項的存在性。為了計算方便與更直接的方式我們調整了原始的證明 [8, 17] 以及增加了一些被作者省略的證明細節。我們也修正了一些錯別字和錯誤 [8, 17]。最後選擇第二篇論文中的一個特例,我們給了一個直接的證明關於週期非線性薛丁格系統的爆破解。
In this thesis, we review two papers about the blow-up of solutions for the nonlinear Schrödinger equation and systems with periodic boundary condition. The first paper ”Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition" was written by T. Ogawa and Y. Tsutsumi [17] and the second paper ”Blow-up of the solution of a nonlinear Schrödinger equation system with periodic boundary conditions" was written by F. Ivanauskas and G. Puriu{{s}}kis [8]. In two papers, we improved some of their results. We obtain better conditions that contain more initial data such that the solution blows up in finite time. In the first paper, we can construct a blow-up solution by a method which is some what like the perturbation argument from F. Merle [15]. We use fixed point theorem to prove the existence of the correction term. We modified the original proofs in [8, 17] which make calculations easier and more straight forward. We add some details which are omitted by the authors. Also, we correct some typos and mistakes in [8, 17]. Finally, we give a direct proof of the blow-up solutions of a nonlinear Schrödinger system with periodic boundary conditions which is a special case of the second paper.
[1] Stephen C Anco and Wei Feng. Group-invariant solutions of semilinear Schrödinger equations in multi-dimensions. Journal of Mathematical Physics, 54(12):121504, 2013.
[2] Radha Balakrishnan. Soliton propagation in nonuniform media. Physical Review
A, 32(2):1144, 1985.
[3] Haim Brezis and Haim Brézis. Functional analysis, Sobolev spaces and partial
differential equations, volume 2. Springer, 2011.
[4] LM Degtyarev, VE Zakharov, and LI Rudakov. Two examples of Langmuir wave
collapse. Zh. Eksp. Teor. Fiz, 68:115–126, 1975.
[5] A Domarkas. Collapse of solutions of a system of nonlinear Schrödinger equations.
Lithuanian Mathematical Journal, 31(4):412–417, 1991.
[6] A Domarkas and F Ivanauska. Solvability of a mixed problem for a nonlin-
ear system of equations of Schrödinger type. Lithuanian Mathematical Journal,
27(3):217–224, 1987.
[7] M Burak Erdoğan and Vadim Zharnitsky. Quasi-linear dynamics in nonlinear
Schrödinger equation with periodic boundary conditions. Communications in
mathematical physics, 281(3):655–673, 2008.
[8] Feliksas Ivanauskas and Gintaras Puriuškis. Blow-up of the solution of a nonlin-
ear Schrödinger equation system with periodic boundary conditions. Nonlinear
analysis: modelling and control, 18(1):53–65, 2013.
[9] PL Kelley. Self-focusing of optical beams. Physical Review Letters, 15(26):1005,
1965.
[10] Zhenguo Liang. Quasi-periodic solutions for 1D Schrödinger equation with the
nonlinearity |u|2pu. Journal of Differential Equations, 244(9):2185–2225, 2008.
[11] B Malomed. Nonlinear Schrödinger equations. 2005.
[12] Sergei V Manakov. On the theory of two-dimensional stationary self-focusing of
electromagnetic waves. Soviet Physics-JETP, 38(2):248–253, 1974.
[13] CR Menyuk. Application of multiple-length-scale methods to the study of optical
fiber transmission. Journal of Engineering Mathematics, 36(1):113–136, 1999.
[14] Curtis R Menyuk. Stability of solitons in birefringent optical fibers. I: Equal
propagation amplitudes. Optics letters, 12(8):614–616, 1987.
[15] Frank Merle. Construction of solutions with exactly k blow-up points for the
Schrödinger equation with critical nonlinearity. Communications in mathematical
physics, 129(2):223–240, 1990.
[16] Hayato Nawa and Masayoshi Tsutsumi. On blow-up for the pseudo-conformally in-
variant nonlinear Schrödinger equation. Funkcialaj Ekvacioj, 32(3):417–428, 1989.
[17] Takayoshi Ogawa and Yoshio Tsutsumi. Blow-up of solutions for the nonlinear
Schrödinger equation with quartic potential and periodic boundary condition. In
Functional-Analytic Methods for Partial Differential Equations, pages 236–251.
Springer, 1990.
[18] Takayoshi Ogawa and Yoshio Tsutsumi. Blow-up of H1 solution for the nonlinear
Schrödinger equation. Journal of Differential Equations, 92(2):317–330, 1991.
[19] Takayoshi Ogawa and Yoshio Tsutsumi. Blow-up of H1 solutions for the one-
dimensional nonlinear Schrödinger equation with critical power nonlinearity. Pro-
ceedings of the American Mathematical Society, 111(2):487–496, 1991.
[20] Christopher J Pethick and Henrik Smith. Bose–Einstein condensation in dilute
gases. Cambridge university press, 2008.
[21] GJ Roskes. Nonlinear multiphase deep-water wavetrains. The Physics of Fluids, 19(8):1253–1254, 1976.
[22] Abul Hasan Siddiqi and Sudarsan Nanda. Functional analysis and applications.
Springer, 2018.
[23] SN Vlasov, VA Petrishchev, and VI Talanov. Averaged description of wave beams
in linear and nonlinear media (the method of moments). Radiophysics and Quan-
tum Electronics, 14(9):1062–1070, 1971.
[24] Richard Lee Wheeden and Antoni Zygmund. Measure and integral, volume 26.
Dekker New York, 1977.
[25] Vladimir E Zakharov et al. Collapse of Langmuir waves. Sov. Phys. JETP,
35(5):908–914, 1972.