| 研究生: |
翁亢賢 Weng, Kang-hsien |
|---|---|
| 論文名稱: |
氧化效應對多光譜輻射測溫法預測鋁合金表面溫度的影響 Oxidation Effect on Surface Temperature Determination using Multispectral Radiation Thermometry for Aluminum Alloys |
| 指導教授: |
溫昌達
Wen, Chang-da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 多光譜輻射測溫法 、鋁合金 、氧化 、放射率 |
| 外文關鍵詞: | Aluminum Alloys, Multispectral Radiation Thermometry, Oxidation, emissivity |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過實驗驗證氧化效應對鋁合金放射率的影響,實驗分別在真空腔體和大氣環境下量測五種不同鋁合金(AL 1100、AL 2024、AL 5083、AL 6061、AL 7005)在600 K、700 K與800 K時的放射率,然後透過多光譜輻射測溫法(MRT)去預測溫度,以了解氧化效應對溫度預測的影響,並且找出最佳的放射率模型。
在放射率的分析上,整體而言,不管有無氧化其放射率有相同的趨勢:(1)隨波長增加而放射率下降;(2)隨溫度上升而放射率上升。並且有氧化時的放射率高於無氧化時的放射率,其符合氧化將造成放射率上升的結果。(3)在無氧化時放射率不隨時間的增加而增加。相反的,當有氧化時放射率則會上升,因為氧化層隨時間增加而增厚。
對推測溫度而言,(1)試件有無氧化對於使用MRT時放射率模型的挑選上將有所不同,這是因為氧化效應會改變其放射率行為,因而適用不同的模型。(2)不管有無氧化,皆有模型推測溫度的平均溫度誤差百分比在4 %以內,表示MRT使用於鋁合金有不錯的預測溫度效果。(3)從最小平方法的曲線迴歸,可以看出實際放射率與MRT所推論出的放射率分佈越接近時,其推測的溫度勢必越準確。(4)MRT推測溫度的結果在高溫時可達更佳的準確性。(5)使用MRT推測溫度,增加波長數並無改善溫度誤差,故使用最小波長數即可,並且可以減少計算的時間。(6)不管有無氧化HRR、IST以及WLT*這三種模型皆有很好的預測溫度結果,其中氧化情況下又以HRR模型為最佳;無氧化情況則是WLT*模型。
In this study, experiments were conducted to examine the effect of surface oxidation on emissivity. The spectral emissivity were measured under an open-air heater system and a high-vacuum heater system for five different aluminum alloys (AL1100、AL2024、AL5083、AL6061、AL7005) at three temperatures (600 K、700 K、800 K). Eight emissivity models were used to examine the Multispectral Radiation Thermometry (MRT) for aluminum alloys in order to understand the effect of surface oxidation on temperature determination and find the best MRT emissivity model as well.
For aluminum alloys emissivity behaviors, overall similar trends are found under oxidized and unoxidized conditions. (1) Emissivity decreases with increasing wavelength. (2) Emissivity increases with increasing temperature. The emissivity of oxidized sample is higher than that of unoxidized sample and this demonstrates that oxidation causes the increase in emissivity. (3) The emissivity of unoxidized sample doesn’t change with time. However, the emissivity of oxidized sample increases due to the growing oxide layer with time.
For the examination of MRT emissivity models on aluminum alloys, (1) since the effect of oxidation changes the emissivity behaviors, different best models are found under conditions with and without oxidation. (2) Models having the percentage of average inferred temperature error under 4% are found for both oxidized and unoxidized samples. Therefore, MRT is suitable and applicable for aluminum alloy temperature determination. (3) For least-squares technique, the closer the inferred emissivity value and real one, the more accurate inferred temperature. (4) More accurate temperature measurement by MRT can be achieved in higher temperature. (5) Increasing number of wavelength doesn’t improve measurement accuracy while applying MRT. Therefore, it is sufficient to employ the required minimum number of wavelengths to save the time on computation. (6) Overall, three emissivity models, HRR、IST and WLT*, are able to achieve high accuracy in temperature prediction for both oxidized and unoxidized heating systems, especially HRR under oxidized condition and WLT* under unoxidized condition.
1.Ansart, F., Ganda, H., Saporte, R., and Traverse, J. P., “Study of The Oxidation of Aluminum Nitride Coatings at High Temperature,” Thin Solid Films, Vol. 260, pp. 38-46, 1995.
2.Bauer, W., Oertel, H., and Rink, M., “Spectral Emissivities of Bright and Oxidized Metals at High Temperature,”Fifteenth Symposium on Thermophysical Properties, June 22-27 2003
3.Campo, L. D., Pérez-Sáez, R. B., Esquisabel, X., Fernández, I. and Tello, M. J., “New Experimental Device For Infrared Spectral Directional Emissivity Measurements In a Controlled Environment,” Review of Scientific Instruments, Vol. 77, pp. 113111, 2006
4.Campo, L. D., Pérez-Sáez, R. B., Tello, M. J., “Iron Oxidation Kinetics Study by using Infrared Spectral Emissivity Measurements below570℃,’’ American institute of Physics, Vol. 77, pp. 113111-8, 2006.
5.DeWitt, D. P., “Introduction to Radiation Thermometry,” Proceedings of the Aluminum Association Workshop on Sensors, pp. 19-39, Atlanta, May 1986.
6.Doloresco, B. K., “Review of Multispectral Radiation Thermometry and Development of Constrained Minimization Method,” M. S. Thesis, Purdue University, school of Mechanical Engineering, West Lafayette, Dec 1986.
7.Duvaut, Th., Georgeault, D., Beaudoin, J. L., “Multiwavelength Infrared Pyrometry: Optimization and Computer Simulations,” Infrared Physics and Technology, Vol. 36, pp. 1089-1103, 1995.
8.Furukawa, T., and Iuchi, T., “Experimental Apparatus For Radiometric Emissivity Measurements of Metals,” Review of Scientific Instruments, Vol. 71, pp. 2843-2847, 2000.
9.Haugh, M. J., “Infrared Thermometry for Low Emissivity Metals,” ISA Transactions, Vol. 22, No. 3, pp. 27-31, 1983.
10.Haugh M. J., “Radiation Thermometry in the Aluminum Industry,” Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. D. Nutter, ed., John Wiley and Sons, New York, pp. 905-971, 1988.
11.Incropera F. P. and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th ed, John Wiley and Sons, New York, pp. 700-756, 2002.
12.Ishii, J. and Ono, A., “Uncertainty Estimation For Emissivity Measurements Near Room Temperature With a Fourier Transform Spectrometer,” Measurement Science and Technology, Vol. 12, pp. 2103-2112, 2001.
13.Iuchi, T., Furukawa, T., and Wada, S., “Emissivity Modeling of Metals During the Growth of Oxide Film and Comparison of the Model with Experimental Results”
14.Ji, J., Gore, J. P., Sivathanu, Y. R. and Lim, J., “Fast Infrared Array Spectrometer used for Radiation Measurements of Lean Premixed Flames,” Proceedings of NHTC'00, 34th National Heat Transfer Conference, Pittsburgh, PA, pp. 1-6, 2000.
15.Meriaudeau, F., Renier, E. and Truchetet, F., “Temperature Imaging and Image Processing in the Steel Industry,” Optical Engineering, Vol. 35, No. 12, pp. 3470-3481, 1996.
16.Meriaudeau, F., Legrand, A. C. and Gorria, P., “Real Time Multispectral High Temperature Measurement: Application to Control in the Industry,” Proceedings of SPIE-IS&T Electronic Imaging, SPIE, Vol. 5011, pp. 234-242, 2003.
17.Modest, M. F., “Radiative Heat Transfer,” 2nd ed, Academic Press, pp. 75-79, 2003.
18.Otsuka, A., Hosono, K., Tanaka, R., Kitagawa, K. and Arai, N., “A Survey of Hemispherical Total Emissivity of the Refractory Metals in Practical Use,” Energy, Vol. 30, pp. 535-543, 2005.
19.Pellerin, M. A., “Multispectral Radiation Thermometry: Emissivity Compensation Algorithm,” M.S. Thesis, Purdue University, school of Mechanical Engineering, 1990.
20.Pellerin, M. A., “Multispectral Radiation Thermometry for Industrial Application,” PhD Thesis, Purdue University, school of Mechanical Engineering, Dec 1999.
21.Reynolds, P. M., “Spectral Emissivity of 99.7% Aluminum between 200 and 500 ,” British J. Applied Physics, Vol. 12, pp. 111-114, 1961.
22.Sinha, P. K., “Study of The Oxidation of Aluminum-Magnesium Alloys Using Ultramicrotomy For TEM Specimen Preparation,” M.S. Thesis, Purdue University, school of Metallurgical Engineering, 1994.
23.Touloukian, Y. S. and DeWitt, D.P., “Thermal Radiative Properties, Metallic Elements and Alloys,” Thermophysical Properties of Matter, Vol. 7, Plenum Corp., New York. 1970.
24.Tsai, B. K., Shoemaker, R. L., Dewitt, D. P., Cowans, B. A., Dardas, Z., Delgass, W. N., and Dail, G. J., “Dual-Wavelength Radiation Thermometry: Emissivity Compensation Algorithms,” International Journal of Thermophysics, Vol. 11(1), pp. 269-281, 1990.
25.Wen, C., and Mudawar, I., “Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using Multispectral Radiation Thermometry (MRT) Algorithms,” Journal of Materials Engineering and Performance, Vol. 11, pp. 551-562, 2002.
26.Wen, C., and Mudawar, I., “Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 47, pp. 3591-3605, 2005.
27.Wen, C., and Mudawar, I., “Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 48, pp. 1316-1329, 2005.
28.Wen, C., “Emissivity Characteristics of Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models,” PhD Thesis, Purdue University, school of Mechanical Engineering, August 2005.
29.Wen, C., and Mudawar, I., “Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys,” International Communications in Heat and Mass Transfer, Vol.49, pp. 4279-4289, 2006.
30.Wen, C., and Mudawar, I., “Mathematical Determination of Emissivity and Surface Temperature of Aluminum Alloys using Multispectral Radiation Thermometry,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 1063-1070, 2006.
31.池逸華, “鋼材放射率行為之實驗研究與線性及對數線性放射率模組在多光譜輻射 測溫法之應用,”碩士論文,國立成功大學機械系, 2007.
32.呂建財, “鋼材放射特徵研究與多光譜輻射測溫法之應用,” 碩士論文,國立成功大學機械系, 2007.
33.蔡宗原, “應用線性與對數線性放射率模組於多光譜輻射測溫法預測鋁合金表面溫度之研究,”碩士論文,國立成功大學機械系, 2008.
34.謝宗霖, “多光譜輻射測溫法放射率模組對預測鋁合金表面溫度的合宜性,”碩士論文,國立成功大學機械系, 2008.
35.武恭, 姚良均, 李震夏, 彭如清, 趙祖德, “鋁及鋁合金材料手冊,”科學出版社.