| 研究生: |
曾律瑗 Tseng, Lu-Yuan |
|---|---|
| 論文名稱: |
利用數位影像相關法分析神木集水區地表位移 Analysis of Surface Displacement in Shenmu Watershed Using Digital Image Correlation (DIC) |
| 指導教授: |
林冠瑋
Lin, Guan-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 數位影像相關法 、地表位移 、神木集水區 、土石流 |
| 外文關鍵詞: | Digital Image Correlation method, surface displacement, Shenmu watershed, debris flow |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
南投縣信義鄉神木村,自1996年7月賀伯颱風引發重大土石流災害後,每逢夏季的颱風或豪雨期間便容易發生土石流災害。為瞭解神木集水區內土砂材料的供應狀態,本研究欲透過數位影像相關法分析集水區內邊坡的活動性,並找出具有高位移潛勢的區塊,再根據現地調查資料及GIS地形分析討論具潛勢區塊的易致災因素。本研究利用多期PlanetScope光學衛星影像及數位影像相關法(Digital Image Correlation, DIC)分析2017年4月至2022年4月期間愛玉子溪及出水溪集水區內邊坡的地表位移速率,根據不同時期邊坡的活動性圈繪出重複位移區塊,發現多數區塊位於裸露地及源頭區,並有少部分區塊位於植披覆蓋的區域,顯示該方法能有效找出無法直接觀察到的位移區塊。為了更細緻地討論具不同地質、地形或水文條件的邊坡地表位移狀況,本研究將愛玉子溪及出水溪流域劃分成多個坡面單元,並從中找出具有明顯地表位移的區塊,結果顯示,具有高潛勢的坡面單元包含以下幾種特徵:坡度較陡、裸露地面積多、受溪流侵蝕影響。最後,為瞭解數位影像相關法的準確性及影像品質對分析結果的影響,本研究使用桃園市復興區光華大規模崩塌潛勢區的UAV正射影像進行分析,並與當地GPS觀測資料進行比較,結果顯示若分析影像解析度較高,影像相關性分析結果的數據會更為精準。本研究主要透過數位影像相關法分析並計算集水區內地表位移速率,並推算出土石流潛勢溪流源頭區及沿岸邊坡提供土石材料的潛能,以提供作為後續評估防災發生潛勢的參考。
Shenmu Village in Xinyi Township, Nantou County, has experienced recurrent landslide disasters during summer typhoons and heavy rainfall events since a major landslide disaster in July 1996. This study aims to analyze slope mobility and identify blocks with high displacement potential in the Shenmu watershed using Digital Image Correlation method (DIC). Field survey data and GIS terrain analysis are utilized to examine the disaster-prone factors of potential blocks. Multi-period PlanetScope optical satellite images and DIC are employed to analyze the surface displacement rate of slopes in the Aiyuzi River and Chushui River catchment areas from April 2017 to April 2022. Results show that most displacement blocks are concentrated in bare land and the source area, indicating the effectiveness of the DIC method in identifying areas that cannot be directly observed. Additionally, the study subdivides the catchment areas into smaller sections to further investigate the surface displacement of slopes with varying geological, topographical, and hydrological conditions. The findings highlight characteristics of high potential areas, such as steep slopes, extensive bare land, and susceptibility to stream erosion. The accuracy of the DIC method is evaluated using UAV orthophoto images, revealing that higher analysis image resolutions yield more accurate results. This study provides valuable insights into surface displacement rates and the potential for land-rock flows, offering reference for subsequent disaster prevention evaluations.
沈鍵偉. (2004). 應用GPS作地滑地地表變位長期監測之可行性研究. (碩士). 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/3bb35r
陳嘉娸. (2014). 順向坡滑動面調查與判釋方法之研究-以新北市某路段護坡工程為例. (碩士). 國立臺北科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/627n5s
潘在祥. (2015). 運用數位影像分析投89線道崩塌地滑移趨勢. (碩士). 朝陽科技大學, 台中市. Retrieved from https://hdl.handle.net/11296/sw3v6g
謝有忠, 唐昭榮, 邱禎龍, 陳宏仁, 費立沅, 陳勉銘, . . . 胡植慶. (2017). 莫拉克颱風受災區域潛在大規模崩塌之光達數值地形判釋應用及地表位移觀測. [Potential catastrophic landslides mapping and surface displacement monitoring in the disaster areas caused by typhoon morakot]. 工程環境會刊(37), 18-44. doi:10.6562/jee.201712_(37).0002
林亭妤. (2022). 運用數位影像相關法分析土石流溪流之地表位移變遷. (碩士). 國立成功大學, 台南市.
林世榮. (2001). 南投縣出水溪土石流之工程地質特性研究. (碩士). 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/w88ztr
張郇生. (1984). 臺灣嘉義── 玉山── 水里公路沿線之地質. In: 經濟部中央地質調查所特刊.
陳樹群, 陳少謙, & 吳俊鋐. (2012). 南投縣神木集水區崩塌特性分析. [Characteristics of the Landslides in Shenmu Watershed in Nantou County]. 中華水土保持學報, 43(3), 214-226. doi:10.29417/jcswc.201209_43(3).0003
楊樹榮, 鄭錦桐, 冀樹勇, & 紀宗吉. (2011). 各國國家型山崩潛災計畫概況. 中興工程(113), 55-66.
謝有忠. (1999). 陳有蘭溪流域土石流發育之地質控制. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/5e879w
王鑫. (1989). 地形學: 聯經出版事業公司.
行政院農委會水土保持局. (2017). 水土保持手冊.
行政院農委會水土保持局. (2021). 神木觀測站基本資料
行政院農委會水土保持局. (2023). 桃園市-復興區-T002(光華)大規模崩塌潛勢區應變措施階段報告.
行政院中央災害防救委員會. (2022). 南投縣地區災害防救計畫.
經濟部中央地質調查所. (2008). 都會區及周緣坡地環境地質資料庫圖集說明書.
經濟部中央地質調查所. (2013). 五萬分之一臺灣流域地質圖. Retrieved from https://gis.moeacgs.gov.tw/mapguide/mapagent/mapagent.fcgi?SERVICE=WMS&VERSION=1.0.0&REQUEST=GetCapabilities.
Allasia, P., Manconi, A., Giordan, D., Baldo, M., & Lollino, G. (2013). ADVICE: A New Approach for Near-Real-Time Monitoring of Surface Displacements in Landslide Hazard Scenarios. Sensors, 13(7), 8285-8302. doi:10.3390/s130708285
Ayoub, F., Leprince, S., & Avouac, J. P. (2009). Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 551-560. doi:10.1016/j.isprsjprs.2009.03.005
Ayoub, F., Leprince, S., & Keene, L. (2009). User’s guide to COSI-CORR co-registration of optically sensed images and correlation. California Institute of Technology: Pasadena, CA, USA, 38, 49s.
Caporossi, P., Mazzanti, P., & Bozzano, F. (2018). Digital Image Correlation (DIC) Analysis of the 3 December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): Results from a Multi-Dataset Investigation. ISPRS International Journal of Geo-Information, 7(9), 25. doi:10.3390/ijgi7090372
Chen, R. F., Lin, C. W., Chen, Y. H., He, T. C., & Fei, L. Y. (2015). Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM. Remote Sensing, 7(11), 15443-15466. doi:10.3390/rs71115443
Eker, R., Aydın, A., & Hübl, J. (2017). Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environmental Monitoring and Assessment, 190(1), 28. doi:10.1007/s10661-017-6402-8
Fernandez, P., & Whitworth, M. (2016). A new technique for the detection of large scale landslides in glacio-lacustrine deposits using image correlation based upon aerial imagery: A case study from the French Alps. International Journal of Applied Earth Observation and Geoinformation, 52, 1-11. doi:10.1016/j.jag.2016.05.002
Franklin, D. G. (1975). STRENGTH DIFFERENTIAL APPLIED TO CREEP - REPLY. Journal of Nuclear Materials, 58(3), 361-362. doi:10.1016/0022-3115(75)90127-0
Jia, H., Zhu, G. J., Guo, L. N., He, J. Y., Liang, B. J., & He, S. W. (2022). An Improved Point Clouds Model for Displacement Assessment of Slope Surface by Combining TLS and UAV Photogrammetry. Applied Sciences-Basel, 12(9), 24. doi:10.3390/app12094320
Leprince, S., Ayoub, F., Klinger, Y., & Avouac, J.-P. (2007). Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. Paper presented at the 2007 IEEE international geoscience and remote sensing symposium.
Leprince, S., Barbot, S., Ayoub, F., & Avouac, J. P. (2007). Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. Ieee Transactions on Geoscience and Remote Sensing, 45(6), 1529-1558. doi:10.1109/tgrs.2006.888937
Lin, P.-S., Lin, J.-Y., Hung, J.-C., & Yang, M.-D. (2002). Assessing debris-flow hazard in a watershed in Taiwan. Engineering Geology, 66(3), 295-313. doi:https://doi.org/10.1016/S0013-7952(02)00105-9
Moore, J. R., Gischig, V., Button, E., & Loew, S. (2010). Rockslide deformation monitoring with fiber optic strain sensors. Natural Hazards and Earth System Sciences, 10(2), 191-201. doi:10.5194/nhess-10-191-2010
Saba, S. B., Ali, M., Turab, S. A., Waseem, M., & Faisal, S. (2023). Comparison of pixel, sub-pixel and object-based image analysis techniques for co-seismic landslides detection in seismically active area in Lesser Himalaya, Pakistan. Natural Hazards, 115(3), 2383-2398. doi:10.1007/s11069-022-05642-y
Takahashi, T. (1981). Debris flow. Annual review of fluid mechanics, 13(1), 57-77.
Turk, T. (2018). Determination of mass movements in slow-motion landslides by the Cosi-Corr method. Geomatics Natural Hazards & Risk, 9(1), 325-336. doi:10.1080/19475705.2018.1435564
Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
Yang, W. T. (2020). Selecting the Best Image Pairs to Measure Slope Deformation. Sensors, 20(17), 11. doi:10.3390/s20174721
Yang, W. T., Wang, Y. J., Wang, Y. Q., Ma, C., & Ma, Y. H. (2020). Retrospective deformation of the Baige landslide using optical remote sensing images. Landslides, 17(3), 659-668. doi:10.1007/s10346-019-01311-7
Yoneyama, S., & Murasawa, G. (2009). Digital image correlation. Experimental mechanics, 207.
Zhang, P., Peterson, S. D., & Porfiri, M. (2019). Combined particle image velocimetry/digital image correlation for load estimation. Experimental Thermal and Fluid Science, 100, 207-221. doi:10.1016/j.expthermflusci.2018.09.011
校內:2028-08-23公開