簡易檢索 / 詳目顯示

研究生: 梁文龍
Liung, Wen-lung
論文名稱: 奈米壓痕實驗應用於塊材之疲勞行為及覆膜材料之疲勞破壞能量--理論分析與實驗印證
Nanoindentation applied to the Theories and Experiments for Fatigue of Bulk and Fatigue Fracture Energy of Coating Materials
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 能量破壞奈米壓痕疲勞
外文關鍵詞: energy, fracture, fatigue, nanoindentation
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為奈米壓痕實驗應用於塊材之疲勞行為與覆膜材料之疲勞破壞能量的理論分析與實驗印證,內容主要可分為三個部分。第一個部分為壓痕巴黎定律,巴黎定律為研究疲勞裂縫延伸速率時,所使用的破裂力學,亦即疲勞裂縫延伸速率與應力強度因子之間的關係。在理論方面,以壓痕破裂模式(Mechanism of indentation fatigue)為基礎,藉由應力強度因子範圍、週次比(R)與壓深進展率(dh/dN)間的關係,去探討震盪段的負載條件,對壓深進展率的影響。結果顯示,就震盪平均負載(Pm)、震盪振幅(Po)及震盪頻率(f)而言,震盪頻率為影響疲勞壓深進展率的主要因素。而實驗方面,利用奈米壓痕機台去設定ㄧ震盪負載函數,在震盪負載(Oscillating load)段前加入一最大停滯負載段(Pmax),以避免震盪段受到潛變效應(Creep effect)的影響,進而由震盪段的壓深與時間反應,去求得單純疲勞壓深進展率。
    第二部分為壓痕疲勞減緩的研究。不同於以往過量或低量荷重(Over or Underload)的方式,本研究以連續間斷震盪負載去探討材料疲勞減緩的行為。在理論方面,壓深進展率會隨著震盪停滯段的次數(i)增加,而以α(Retardation constant)為公比呈等比數列遞減。
    其中α為一與震盪停滯時間有關之常數。且研究結果顯示,壓深進展率的減緩程度與總震盪停滯時間有關。實驗方面,由奈米壓痕試驗機台,設計ㄧ連續間斷的震盪負載函數,即以震盪停滯段將震盪段區隔成數段的方式,去探討材料的疲勞減緩效應。
    第三個部分為覆膜材料之疲勞破壞能量,此覆膜材料為矽底材披覆氧化矽薄膜。理論方面,提出一以塑性能為考量的能量法,藉由週期預測能(Wi)與複合破壞能(Wd)之差,去求得近似膜薄疲勞破壞所需的能量(Wf)。實驗方面,由震盪段的負載條件,去探討震盪平均負載、震盪振幅及震盪頻率對Wf的影響。結果顯示,震盪頻率為影響Wf的重要因素。在較高震盪頻率時(f >10),Wf會隨著破壞前的壓深進展率((dh/dN)bf)的增加而遞減;在較低震盪頻率時(f ≦10),Wf幾乎為一定值,而具有一固定的破壞能量上限。

    The aims of this paper are to study fatigue behaviors of bulk and develop a energy method of fatigue fracture for coating materials by using cyclic load of nanoindentation. In the part of fatigue behaviors of bulk, we discuss the Paris Law and fatigue retardation for the specimens 6061 Al and 304 HSS. Paris Law is a theory of fracture mechanics related to fatigue crack propagation which has some different forms related to parameters of stress ratio(R) and stress intensity variance. Based on the mechanism of indentation fatigue, we applie these two parameters to develop a formula for discussing the effects of cyclic load conditions about indentation depth propagation rate(dh/dN), including oscillating mean load(Pm)、oscillating amplitude(Po) and oscillating frequency( f ). The experimental results show that f is the most important factor to dh/dN. And dh/dN of this study is a purely fatigue behavior by avoiding the creep effect of oscillation segment due to max loading-hold(Pmax) setting.
    In the part of fatigue retardation, the setting of oscillating load is a continuously interrupted oscillation type which oscillating segment is divided to several sub-segments with the oscillating-hold intervals. The side of theroy, dh/dN would decrease as the number of oscillating-hold (i) increasing and the decreasing tendency is a propotional series with a common ration α which is related to oscillating-hold time. Finally, results show the quantity of fatigue retardation is dominated by total oscillating-hold time.
    The last part of energy method of fatigue fracture for the SiO coating material which substrate is Si. We only consider the plastic energy during the all load-depth of indentation process, using difference between cyclic predicted energy Wi and composite fracture energy Wd to evaluate the fatigue fracture energy of pseudo-film Wf. And Wi is predicted by the depth propagation rate before fatigue fracture (dh/dN)bf during oscillating segment. Experimental results show that the frequency of oscillating load condition is an only effective factor to Wf. Wf would decrease as (dh/dN)bf increasing under relative high oscillating frequency (f >10 Hz), and Wf is asymptotic to a constant having a constant fracture energy limit under relative low oscillating frequency (f≦10 Hz).

    中文摘要 I 英文摘要 III 誌謝 V 章節目錄 VI 表目錄 VII 圖目錄 VIII 符號表 X 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3研究目的與內容 6 第二章 基本理論 7 2.1壓痕破裂模式 7 2.2壓痕巴黎定律 9 2.3壓痕疲勞減緩 12 2.4覆膜材料之疲勞破壞能量 13 2.4.1靜態壓痕之材料變形能量 13 2.4.2覆膜材料之靜態壓痕破壞能量 16 2.4.3覆膜材料之壓痕疲勞破壞能量 19 第三章 實驗規劃 33 3.1實驗內容 33 3.2壓痕疲勞實驗分析 35 3.2.1壓深與時間的似合 35 3.2.2潛變效應 35 3.2.3壓頭幾何效應 36 3.3疲勞破壞實驗分析 37 3.3.1壓深震幅的擴大 37 3.3.2震盪段前的破壞 37 第四章 結果與討論 50 4.1壓痕疲勞之潛變效應 50 4.2壓痕巴黎定律 53 4.3壓痕疲勞減緩 56 4.4覆膜材料之疲勞破壞能量 59 第五章 結論與未來研究 78 5.1引言 78 5.2結論 78 5.2.1壓痕巴黎定律 78 5.2.2壓痕疲勞減緩 79 5.2.3覆膜材料之疲勞破壞能量 80 5.3未來研究 81 參考文獻 82 自述 85

    1 Johnson, K. L.; 1985, Contact mechanics, Cambridge
    University Press.
    2 Hertz, H.; Miscellaneous Papers, 1896, Macmillan, London.
    3 Oliver, W. C.; Pharr, G. M.; 1992, “An improved
    technique for determining hardness and elastic modulus
    using load and displacement sensing indentation
    experiments”, Journal of Material Research; 7(4),
    1564-1583.
    4 Oliver, W. C.; Pharr, G. M.; 2004, “Measurement of
    Hardness and Elastic Modulus by Instrumented
    Indentation: Advances in Understanding and Refinements
    to Methodology ”, Journal of Material Research; 19, 3 -
    20.
    5 Li, J. C. M.; Chu, S. N. G.; 1979, “Impression
    Fatigue”, Scr. Metall.; 13(11), 1021-1026.
    6 Li, J. C. M.; 2002, “Impression creep and other
    localized tests”, Materials Scinece and Engineering;
    A322, 23-42.
    7 Li, Xiaodong; Bhushan, Bharat; 2002, “Development of a
    nanoscale fatigue measurement technique and its
    application to ultrathin amorphous carbon coatings”,
    Scripta Materialia; 47, 473-479.
    8 Li, Xiaodong; Bhushan, Bharat; 2003, “Fatigue studies
    of nanoscale structures for MEMS/NEMS applications
    using nanoindentation techniques ”, Surface and
    Coatings Technology; 163-164, 521-526.
    9 Beake, B. D.; Smith, J. F.; 2004, “Nano-impact testing—
    an effective tool for assessing the resistance of
    advanced wear-resistant coatings to fatigue failure
    and delamination”, Surface and Coatings Technology;
    188-189, 594-598.
    10 Beake, B. D.; Lau S.P.; Smith J.F.; 2004, “Nanoscale
    repetitive impact testing of polymer films”, Joural
    of Materials Research; 19 (1), 237-247.
    11 Beake, B. D.; Lau S.P.; Smith J.F.; 2004, “Evaluating
    the fracture properties and fatigue wear of tetrahedral
    amorphous carbon films on silicon by nano-impact
    testing”, Surface and Coatings Technology; 177-178,
    611-615.
    12 魏伯任; 2005, “奈米壓痕實驗運用於塊材、覆膜材料機械性質
    以及硬脆材料黏彈性質量測-理論分析與實驗驗證”, 國立成
    功大學, 博士論文
    13 Xu, B. X.; Yue, Z. F.; 2006, “Study of the ratcheting
    by the indentation fatigue method with a flat
    cylindrical indenter: Part I.Experimental study”,
    Journal of Materials Research; 21(7), 1793-1797.
    14 Paris, P.C.; Gomez, M.P.; Anderson, W.E.; 1961, “A
    rational analytic theory of fatigue”, The Trend in
    Engineering; 13, 9-14.
    15 Fischer-Cripps, A.C.; 2004,“Nanoindentation (Second
    edition) ”, Springer.
    16 Sakai, M.; 1993, “Energy Principle of The Indentation-
    Induced Inelastic Surface Deformation and Hardness
    of Brittle Materials”, Acta metal. Mater.; 41(6),
    511-522.
    17 Ellyin, F.; Kujawski, D.;1984, “Plastic Strain Energy
    in Fatigue Failure”, Journal of Pressure Vessel
    Technology; 106, 342-347.
    18 Love, A. E. H.; Math, Q. F.; 1939; 10, 161.
    19 Pharr, G. M.; Oliver W. C.; Brotzen, F. R.; 1992, “On
    the Generality of the Relationship Among Contact
    Stiffness, Contact Area, and Elastic Modulus During
    Indentation”, J. Mater. Res.; 7, 613-617.
    20 Li, X.; Diao, D.; Bhushan, B.; 1997, “Fracture
    Mechanisms of Thin Amorphous Carbon Film in
    Nanoindentation”, Acta. mater.; 45(11), 4453-4461.
    21 楊雲凱; 2002, “低溫離子束沉積含氮類鑽碳薄膜之附著功理論
    建立及微-奈米磨潤性能之研究”, 國立成功大學, 碩士論文
    22 Fischer-Cripps, A.C.; 2001, “Simulation of Sub-Micron
    indentation Tests with Spherical and Berkovich
    Indenters”, J. Mater. Res.; 16(7), 2149-2157.
    23 Suresh, S.; Giannakopoulos, A. E.; 1999,
    “Determination of Elastoplastic Properties by Sharp
    Indentation”, Scripta Mater.; 40(10), 1191-1198.
    24 Taljat, B.; Zacharia, T.; Kosel, F.; 1998, “New
    Analytical Procedure to Determine StressStrain Curve
    from Spherical Indentation Data”, International
    Journal of Solids Structures; 35(33), 4411-4426.
    25 Field, J. S.; Swain, M. V.; 1993, “A Simple Predictive
    Model for Spherical Indentation”, J. Mater. Res.; 8
    (2), 297-306.
    26 Nix, W.D., Gao, H., 1998, “Indentation Size Effects in
    Crystalline Materials: A Law for Strain Gradient
    Plasticity”, J. Mech. Phys. Solids, 46(3), 411-425.
    27 Lucas, B. N.; Oliver, W. C.; Swindman, J. E.; 1998,
    “The Dynamics of Frequency-Specific, Depth-sensing
    Indentation Testing”, MRS Symp.Proc.; 522, 3-14.
    28 Nagn, A.H.W.; Tang, B.; 2002, “Viscoelastic effects
    during unloading in depth -sensing indentation”, J.
    Mater. Res.; 17(10), 2604-2610.
    29 Oyen, M. L.; Cook, R. F.; 2003, “Load-displacement
    behavior during sharp indentation of viscous-elastic-
    plastic materials”, J. Material Research; 18(1),
    139- 150.
    30 Zhang, Y. W.; Yang, S.; 2004, “Analysis of
    nanoindentation creep for polymeric materials”, J.
    Applied Physics; 95(7), 3655-3666.
    31 Kaszynski, P.; Ghorbel, E.; Marquis, D.; 1998, “An
    experimental study of ratcheting during indentation
    of 316L stainless steel”, J. Eng. Mater. Tech.,
    120, 218-223.
    32 Xu, B.X.; Yue, Z.F.; 2007, “Study of the ratcheting by
    the indentation fatigue method with a flat
    cylindrical indenter: Part I. Experimental study”,
    J. Mater. Res., 22(1), 186-192.
    33 Broek, D.; “The Practical Use of Fracture
    Mechanics”, FractuREsearch, Calena, OH, USA.
    34 陳文華、張士欽譯; 1995, “基本工程破裂力學”, 國立編譯館
    35 高研碩; 2005, “奈米疲勞破壞之理論研究與實驗驗證”, 國立
    成功大學, 碩士論文

    下載圖示 校內:立即公開
    校外:2007-08-01公開
    QR CODE