簡易檢索 / 詳目顯示

研究生: 莊偉程
Jhuaung, Wei-cheng
論文名稱: 以田口方法改善顯影製程缺陷之研究
Research on Improvement of Photolithography Process Defects Using the Taguchi Method
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 48
中文關鍵詞: 光阻殘留田口方法微影製程產量改善
外文關鍵詞: photoresist residue, Taguchi method, lithography process, yield improvement
相關次數: 點閱:122下載:59
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討晶圓表面光阻殘留製程異常缺陷改善的分析與研究。光阻殘留是半導體製程中常見的問題,可能導致產品品質不佳和產量下降,為了解決這個問題,本研究使用了田口方法和微影製程,提出了一種改善光阻殘留的製程修改方案。本研究先進行了相關文獻的回顧,深入瞭解了半導體製程與材料、黃光製程技術、光阻塗佈、曝光原理和顯影原理等相關理論基礎。接著,根據光阻殘留的形成機制和影響因素,以及目前常用的改善方法和技術,本研究設計了一系列的相關實驗,使用不同的製程參數和條件,進行光阻殘留改善的測試。
    根據實驗設備、條件和步驟,進行了數據分析和結果評估發現,本研究成功的改善了光阻殘留問題,並提高了開發劑的產量。研究結果也顯示,製程修改方案對於光阻殘留的改善具有顯著的效果。此外,本研究還進一步探討了製程參數和條件對光阻殘留的影響,並提出了一些優化建議,以進一步提高產品的品質和產量。總體而言,本研究提供了有關晶圓表面光阻殘留製程異常缺陷改善的重要信息,並為相關研究提供了重要的參考價值。

    In this study, the experimental equipment, conditions, and procedures, data analysis and result evaluation were conducted, revealing that this study successfully addressed the issue of photoresist residue and improved the yield of the developer. The research results also demonstrate that the process modification scheme has a significant effect on improving the photoresist residue. Additionally, this study further investigates the impact of process parameters and conditions on photoresist residue and proposes some optimization suggestions to further enhance product quality and yield. Overall, this study provides important information on the improvement of abnormal defects in photoresist residue on wafer surfaces and offers valuable references for related research.

    摘要 I 英文摘要 II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構 3 第二章 文獻探討 4 2.1 半導體製程與材料 4 2.2 黃光製程技術介紹 5 2.3 光阻塗佈 7 2.4 曝光原理與簡介 9 2.5 顯影原理 10 2.6 Bumpimg製程簡介 12 第三章 實驗設備 14 3.1 光阻塗佈機(Track) 14 3.2 步進式曝光機(Stepper) 20 3.3 光阻顯影機(Developer) 30 第四章 使用田口最佳化分析法進行實驗 38 4.1 問題事件描述 38 4.2 現行作業機台經常性造成缺陷因子與水準的選定 38 4.3 直交表實驗配置與規劃 40 4.4 實驗執行 40 4.5 實驗結果分析 41 4.6 最佳化製程條件 43 4.7 良率驗證 44 第五章 結論與未來研究方向 45 5.1 結論 45 5.2 未來研究方向 45 第六章 參考文獻 46

    1. I. Peterson, B. Louis, A. Cross, and M. Hoff, “Yield Management Solutions”, Vol. 5. No. 1341, pp. 39-40 (2003).
    2. B. Bergstrom, and Y. Choi, “A 45nm Logic Technology with High-k+ Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging. In IEDM Technical Digest”, IEEE International Electron Devices Meeting, (2007).
    3. D. H. Son, Y. W. Jo, J. H. Seo, C. H. Won, K. S. Im, Y. S. Lee, and J. H. Lee, “Low Voltage Operation of GaN Vertical Nanowire MOSFET”, Solid-State Electronics, Vol. 145, pp. 1-7 (2018).
    4. Y. Huang, X. Duan, Q. Wei, and C. M. Amber, “Directed Assembly of One
    Dimensional Nanostructures into Functional Networks”, Science, Vol. 291, No. 5504, pp. 630-633 (2017).
    5. R. F. Pease, “Imprints Offer Moore” Nature, Vol. 417, No. 6891, pp. 802-803 (2002).
    6. C. Mack, “Fundamental Principles of Optical Lithography the Science of Microfabrication”, John Wiley and Sons (2007).
    7. J. S. Chang, A. F. Facchetti and R. Reuss, “A Circuits and Systems Perspective of Organic/Printed Electronics Review, Challenges, and Contemporary and Emerging Design Approaches”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 7, No. 1, pp. 7-26 (2017).
    8. W. Deng, Y. Lv, X. Zhang, X. Fang, B. Lu, Z. Lu, and J. Jie, “High-Resolution Patterning of Organic Semiconductor Single Crystal Arrays for High-Integration Organic Field-Effect Transistors”. Materials Today, Vol. 40, pp. 82-90 (2020).
    9. J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, and S. Jung, “Three-Dimensional Monolithic Integration in Flexible Printed Organic Transistors”. Nature Communications, Vol. 54, pp. 10 (2019).
    10. K. Suzuki, K. Yutani, M. Nakashima, A. Onodera, S. Mizukami, M. Kato, and H. “Tomono, Fabrication of All-Printed Organic TFT Array on Flexible Substrate”. Journal of Photopolymer Science and Technology, 24 Vol. 5, pp. 565-570 (2011).
    11. K. Fukuda, and T. Someya, “Recent Progress in the Development of Printed Thin‐Film Transistors and Circuits with High‐Resolution Printing Technology”. Advanced Materials, Vol. 29, No. 25 pp. 1602736 (2017).
    12. H. W. Park, K. Y. Choi, J. Shin, B. Kang, H. Hwang, S. Choi, and D. H. Kim, “Universal Route to Impart Orthogonality to Polymer Semiconductors for Sub‐Micrometer Tandem Electronics”. Advanced Materials, Vol. 31, No. 28 pp. 1901400 (2019).
    13. V. K. Bandari, Gu, Y. Shi, S. Nan, Y. He, K. Li, and O. G. Schmidt, “Fully Integrated Microscale Quasi‐2d Crystalline Molecular Field‐Effect Transistors”. Advanced Functional Materials, Vol. 29, No. 36, pp. 1903738 (2019).
    14. I. E. Jacobs, E. W. Aasen, D. Nowak, J. Li, W. Morrison, J. D. Roehling, and A. J. Moulé, “Direct‐Write Optical Patterning of P3HT Films Beyond the Diffraction Limit”. Advanced Materials, Vol. 29, No. 2 pp. 1603221 (2017).
    15. J. Jang, Y. Song, D. Yoo, C. K. Ober, J. K. Lee, and T. Lee, “The Development of Fluorous Photolithographic Materials and their Applications to Achieve Flexible Organic Electronic Devices”. Flexible and Printed Electronics,
    Vol. 1, No. 2 pp. 023001 (2016).
    16. E. K. Lee, C. H. Park, J. Lee, H. R. Lee, C. Yang, and J. H. Oh, “Organic Transistors: Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography”. Advanced Materials, Vol. 29, No. 11 pp. 1605282 (2017)
    17. J. Freudenberg, D. Jänsch, F. Hinkel, and U. H. Bunz, “Immobilization Strategies for Organic Semiconducting Conjugated Polymers”. Chemical Reviews, Vol. 118, No. 11, pp. 5598-5689 (2018).
    18. S. Feser, and K. Meerholz, “Investigation of the Photocross-Linking Mechanism in Oxetane-Functionalized Semiconductors”. Chemistry of Materials, Vol. 23, No. 22, pp. 5001-5005 (2011).
    19. A. D. Campo, & C. Greiner, “SU-8: A Photoresist for High-Aspect-Ratio and 3D Submicron Lithography”. Journal of Micromechanics and Microengineering, Vol. 17, No.6, pp.81-95 (2007).
    20. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops”. Nature, Vol. 592, No. 7855, pp. 12 (2021).
    21. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles”. Nanotechnology, Vol. 18, No.34, pp. 345202 (2007).
    22. L. F. Miller, “Controlled Collapse Reflow Chip Joining”. IBM Journal of Research and Development, Vol. 13, No. 3, pp. 239-250 (1969).
    23. P. A. Totta, “Flip-Chip Solder Terminals”. In 21st Electronics Components Conf. (1971).
    24. P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J. Sheaffer, “Chip-to-Package Interconnections”. Microelectronics Packaging Handbook: Semiconductor Packaging, pp. 129-283 (1997).
    25. 東京威力科創TEL-ACT-8光阻塗佈顯影機訓練教材(2003)。
    26. Ultratech光阻曝光機訓練教材(1999)。
    27. 吳國裕,”半導體顯影覆蓋誤差的策略控制”,國立交通大學碩士學位論文(2008)。
    28. 呂志鵬,”光阻烘烤製程的不均勻性對CD之影響”,國立交通大學工學院半導體材料與製程設備學程碩士論文(2009)。
    29. 李輝煌教授,田口方法:品質設計的原理與實務,高立圖書有限公司出版 (2011)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE