簡易檢索 / 詳目顯示

研究生: 邱子熏
Chiu, Tzu-Hsun
論文名稱: 發展一種可注射型硫化軟骨素溫感水膠結合髕下脂肪墊間質幹細胞用於軟骨修復
An Injectable Thermo-sensitive Hydrogel Composed of Chondroitin Sulfate with Infrapatellar Fat Pad Mesenchymal Stem Cells for Osteochondral Defect Repair
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: 可注射型溫感水膠硫化軟骨素間質幹細胞骨軟骨修復
外文關鍵詞: Injectable, Thermalensitive hydrogel, Chondroitin sulfate, Mesenchymal stem cells, Osteochondral repair
相關次數: 點閱:165下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膝軟骨損傷是膝蓋常見疾病,病發原因可能為受到巨大撞擊、關節炎、骨軟骨炎、骨壞死或其他有關於韌帶受傷所產生的併發症。臨床上治療軟骨受傷的方式以保守治療為主,若患病部位持續惡化,則最終仍需走向全關節置換一途。組織工程的概念結合近幾年微創手術已證實有較好的癒後和縮短恢復期等優點,使得開發可注射型支架成為必要發展方向。
    本研究開發一種含有「聚N-異丙基丙烯醯胺」、「聚乙二醇」結合「硫化軟骨素」的溫感型水膠探討此共聚物混合臏下脂肪墊間質幹細胞所形成的三維支架對軟骨組織工程的影響。由結果顯示加入硫化軟骨素和聚乙二醇並不會使聚N-異丙基丙烯醯胺本身所具有的相轉變溫度特性消失。甚至此「聚乙二醇與聚N-異丙基丙烯醯胺接枝硫化軟骨素」水凝膠的生物可相容性與機械強度皆因共聚硫化軟骨素和聚乙二醇而結合此二材料本身的優點而提高。
    此外,許多文獻指出硫化軟骨素擁有促進和誘發間質幹細胞走向軟骨再生的能力,然而以本篇所設定的條件觀察軟骨化重要胞外基質glycosaminoglycans之定量分析,即使在培養21天後仍沒有顯著提升,顯示若無常見生長因子例如TGF-β之輔助,單獨存在硫化軟骨素無法啟動幹細胞分化之程序。
    以紐西蘭大白兔骨軟骨缺損模型測試「聚乙二醇與聚N-異丙基丙烯醯胺接枝硫化軟骨素」水凝膠,術後4周與12周分別以外觀、組織染色及微計算機斷層掃描技術定性定量修復組織,相對於純聚N-異丙基丙烯醯胺水凝膠,本篇發展之共聚物水凝膠效果良好,尤以植入聚N-異丙基丙烯醯胺接枝硫化軟骨素組別於術後四周效果最佳。然而,我們推測應是硫化軟骨素之劑量不足,使術後12周的結果未臻理想。我們亦發現於植入物和原生組織之邊界產生glycosaminoglycans逐漸流失的現象,歸因於此溫感型水膠係以物理性方式成膠,即使加入硫化軟骨素和聚乙二醇提升該水膠之強度仍不足以達到機械穩定的狀態。未來仍可以藉由修改硫化軟骨素或聚乙二醇之濃度、分子量更進一步修改水凝膠的各項特性,以期作為軟骨組織工程中理想支架材料。

    Articular cartilage defects are common conditions affecting the knee joint. It is often caused by trauma, osteonecrosis, osteochondritis, and other conditions in associated with ligament injuries, such as ACL tears. Early cartilage defects are frequently treated with conservative therapies. When the defect continued to deteriorate, eventually, joint replacement operations are needed. However, tissue engineering approach may provide the alternative choice to repair the articular cartilage defect. Recently, minimal invasive surgery become the trend due to faster recovery time and good outcome, so development of injectable cartilage defect repair scaffold is needed.
    In this study, the PEG-PNIPAAm-g-Chondroitin sulfate (CS) thermosensitive hydrogel was synthesized to investigate its potential as a three-dimensional (3D) culture matrix with infrapatellar fat pad derived mesenchymal stem cells (IFPMSCs). The results revealed that hydrogel composites preserved their sol–gel transition properties in the presence of CS and PEG. Particularly, inclusion of CS and PEG into the hydrogels would provide both enhanced mechanical properties and bioactivity to the composites. Mechanical testing results show that this polymeric hydrogel has significant stiffness than pure PNIPAAm and natural network. Furthermore, numerous studies have shown the ability of CS to induce or enhance chondrogenesis, while the cartilage extracellular matrix wasn’t significantly increase in this study after twenty-one days. It reveals that mesenchymal stem cells couldn’t be induced chondrogenesis by CS alone without chondrogenic supplements.
    Using New Zealand White Rabbit osteochondral defect as model showed that repairs of PNCS and NCS groups are much better than pure PNIPAAm hydrogel after 4 weeks and 12 weeks, especially NCS group after 4 weeks. Whereas such a positive result in NCS group didn’t maintain after 12 weeks, which may imply the shortage of chondroitin sulfate. Moreover, there was a synergistic increased loss of glycosaminoglycan around the edge of defect due to the poor mechanical integrity, the limitation of physical gels which could be solved by the tailoring of the material composition. This new material composed of PEG, PNIPAAm, and CS with more modifications (e.g. dose-dependent of CS or ratio of composition) and evaluations could be a promising candidate for cartilage tissue engineering.

    Table of Contents 摘要 I Abstract II 誌謝 Acknowledgement III Table of Contents IV List of Figures VI List of Tables VII Chapter 1: Introduction 1 1.1 Biology and Composition of Articular cartilage 1 1.2 Articular cartilage Repair: Basic science and Clinical progress 2 1.3 Cartilage tissue engineering 3 1.3.1 Cell source 3 1.3.1.1 Infrapatellar fat pad derived mesenchymal stem cells (IFPMSCs) 4 1.3.2 Scaffold 4 1.3.2.1 Poly(N-isopropylacrylamide) (PNIPAAm) 5 1.3.2.2 Polyethylene glycol (PEG) 6 1.3.2.3 Chondroitin sulfate(CS) 6 1.3.3 Stimulation 7 1.4 Motivation and aims 8 Chapter 2: Materials & Methods 10 2.1 Instruments 10 2.2 Materials 10 2.3 Experiment flow chart 12 2.4 Functionalization of Methacrylated Chondroitin Sulfate (CSMA) 13 2.5 Fabrication of PNIPAAm-based hydrogel 13 2.6 Isolation and culture of infrapatellar fat pad derived mesenchymal stem cells 14 2.7 Characterization properties of prepared hydrogels 15 2.7.1 Structure of PEG-PNIPAAm-g-CS hydrogel 15 2.7.2 Internal morphology of the hydrogels 16 2.7.3 LCST measurement 16 2.7.4 Swelling ratio 16 2.7.5 Mechanical stiffness 16 2.8 In vitro analysis of PNIPAAm-based hydrogel 17 2.8.1 Cell viability and proliferation 17 2.8.2 Quantification of GAG content 18 2.9 Hydrogel implants for osteochondral defect repair in rabbit model 19 2.9.1 In vivo long-term cellular tracing 19 2.9.2 Surgical procedure 19 2.9.3 Gross appearance and histological analysis 20 2.9.4 Micro-CT scanning 21 2.10 Statistical Analysis 21 Chapter 3: Results & Discussion 22 Part I: Characterization of PEG-PNIPAAm-g-CS copolymer hydrogel 22 PEG-PNIPAAm-g-Chondroitin sulfate synthesis 22 Phase transition characteristic 24 Hydrophilic degree of block copolymer and degradation profile 26 Morphological study 27 Mechanical properties of physical hydrogels 28 Part II: In vitro 29 Cytotoxicity of polymeric hydrogel 29 Quantitation of sulfated glycosaminoglycan (sGAG) production 31 Part III: Hydrogel implants for osteochondral defect repair in rabbit model 34 Subchondral bone formation evaluated by micro-CT 36 Histological evaluation of osteochondral defects 38 Biodegradability 45 Chapter 4: Conclusions 45 References 46

    1. Temenoff, J.S. and A.G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 21(5): p. 431-440, (2000).
    2. Zhang, L., J. Hu, and K.A. Athanasiou, The role of tissue engineering in articular cartilage repair and regeneration. Critical Reviews in Biomedical Engineering, 37(1-2): p. 1-57, (2009).
    3. Sophia Fox, A.J., A. Bedi, and S.A. Rodeo, The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health, 1(6): p. 461-468, (2009).
    4. Publication, A. and J. Arya, Health Naturally: Nature Cure for Common Diseases. 2011: Dr. Arya Publications, Pune.
    5. Pearle, A.D., R.F. Warren, and S.A. Rodeo, Basic science of articular cartilage and osteoarthritis. Clinics in sports medicine, 24(1): p. 1-12, (2005).
    6. Bhosale, A.M. and J.B. Richardson, Articular cartilage: structure, injuries and review of management. British medical bulletin, 87(1): p. 77-95, (2008).
    7. Orth, P., A. Rey-Rico, J.K. Venkatesan, H. Madry, and M. Cucchiarini, Current perspectives in stem cell research for knee cartilage repair. Stem Cells and Cloning : Advances and Applications, 7: p. 1-17, (2014).
    8. Poole, A.R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty, Composition and structure of articular cartilage: a template for tissue repair. Clinical orthopaedics and related research, 391: p. S26-S33, (2001).
    9. Falah, M., G. Nierenberg, M. Soudry, M. Hayden, and G. Volpin, Treatment of articular cartilage lesions of the knee. International Orthopaedics, 34(5): p. 621-630, (2010).
    10. Hott, M.E., Cartilage tissue engineering: uses of injection molding and computer aided design for the fabrication of complex geometries with high dimensional tolerances: a dissertation. Thesis (2007).
    11. Kuroda, R., K. Ishida, T. Matsumoto, T. Akisue, H. Fujioka, K. Mizuno, et al., Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis and Cartilage, 15(2): p. 226-231, (2007).
    12. Knutsen, G., L. Engebretsen, T.C. Ludvigsen, J.O. Drogset, T. Grøntvedt, E. Solheim, et al., Autologous chondrocyte implantation compared with microfracture in the knee. The Journal of bone and joint surgery. American volume, 86(3): p. 455-464, (2004).
    13. Steadman, J.R., W.G. Rodkey, S.B. Singleton, and K.K. Briggs, Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Operative techniques in orthopaedics, 7(4): p. 300-304, (1997).
    14. Hangody, L., G. Vásárhelyi, L.R. Hangody, Z. Sükösd, G. Tibay, L. Bartha, et al.,
    47
    Autologous osteochondral grafting—technique and long-term results. Injury, 39(1): p. 32-39, (2008).
    15. Bentley, G., L. Biant, R. Carrington, M. Akmal, A. Goldberg, A. Williams, et al., A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. Journal of Bone & Joint Surgery, British Volume, 85(2): p. 223-230, (2003).
    16. Horas, U., D. Pelinkovic, G. Herr, T. Aigner, and R. Schnettler, Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. The Journal of bone and joint surgery. American volume, 85(2): p. 185-192, (2003).
    17. Ingavle, G.C., N.H. Dormer, S.H. Gehrke, and M.S. Detamore, Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly (ethylene glycol) diacrylate. Journal of Materials Science: Materials in Medicine, 23(1): p. 157-170, (2012).
    18. Butler, D.L., S.A. Goldstein, and F. Guilak, Functional tissue engineering: the role of biomechanics. Journal of biomechanical engineering, 122(6): p. 570-575, (2000).
    19. Mazor, M., E. Lespessailles, R. Coursier, R. Daniellou, T.M. Best, and H. Toumi, Mesenchymal stem-cell potential in cartilage repair: an update. Journal of Cellular and Molecular Medicine, 18(12): p. 2340-2350, (2014).
    20. Buckley, C.T., T. Vinardell, S.D. Thorpe, M.G. Haugh, E. Jones, D. McGonagle, et al., Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells. Journal of Biomechanics, 43(5): p. 920-926, (2010).
    21. Tuan, R.S., G. Boland, and R. Tuli, Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Research and Therapy, 5(1): p. 32-45, (2003).
    22. Koh, Y.-G. and Y.-J. Choi, Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. The Knee, 19(6): p. 902-907, (2012).
    23. Ding, D.-C., K.-C. Wu, H.-L. Chou, W.-T. Hung, H.-W. Liu, and T.-Y. Chu, Human Infrapatellar Fat Pad-Derived Stromal Cells Have More Potent Differentiation Capacity Than Other Mesenchymal Cells and Can Be Enhanced by Hyaluronan. Cell transplantation, 24(7): p. 1221-1232, (2015).
    24. Wickham, M.Q., G.R. Erickson, J.M. Gimble, T.P. Vail, and F. Guilak, Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clinical orthopaedics and related research, 412: p. 196-212, (2003).
    25. English, A., E. Jones, D. Corscadden, K. Henshaw, T. Chapman, P. Emery, et al., A comparative assessment of cartilage and joint fat pad as a potential source of cells
    48
    for autologous therapy development in knee osteoarthritis. Rheumatology, 46(11): p. 1676-1683, (2007).
    26. Wei, W., R. Rudjito, N. Fahy, J. Verhaar, S. Clockaerts, Y. Bastiaansen-Jenniskens, et al., The infrapatellar fat pad from diseased joints inhibits chondrogenesis of mesenchymal stem cells. Osteoarthritis and Cartilage, 23: p. A145-A146, (2015).
    27. Makris, E.A., A.H. Gomoll, K.N. Malizos, J.C. Hu, and K.A. Athanasiou, Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology, 11(1): p. 21-34, (2015).
    28. Caron, M.M.J., P.J. Emans, M.M.E. Coolsen, L. Voss, D.A.M. Surtel, A. Cremers, et al., Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis and Cartilage, 20(10): p. 1170-1178, (2012).
    29. Bartlett, W., J. Skinner, C. Gooding, R. Carrington, A. Flanagan, T. Briggs, et al., Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. Bone & Joint Journal, 87(5): p. 640-645, (2005).
    30. Zhu, J. and R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, 8(5): p. 607-626, (2011).
    31. Madan, M., A. Bajaj, S. Lewis, N. Udupa, and J. Baig, In situ forming polymeric drug delivery systems. Indian journal of pharmaceutical sciences, (2009).
    32. Fortier, L.A., J.U. Barker, E.J. Strauss, T.M. McCarrel, and B.J. Cole, The role of growth factors in cartilage repair. Clinical Orthopaedics and Related Research®, 469(10): p. 2706-2715, (2011).
    33. Nguyen, H.H., B. Payré, J. Fitremann, N. Lauth-de Viguerie, and J.-D. Marty, Thermoresponsive Properties of PNIPAM-Based Hydrogels: Effect of Molecular Architecture and Embedded Gold Nanoparticles. Langmuir, 31(16): p. 4761-4768, (2015).
    34. Kessler, M.W. and D.A. Grande, Tissue engineering and cartilage. Organogenesis, 4(1): p. 28-32, (2008).
    35. Blakney, A.K., M.D. Swartzlander, and S.J. Bryant, The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. Journal of Biomedical Materials Research. Part a, 100(6): p. 1375-1386, (2012).
    36. Gao, L., R. McBeath, and C.S. Chen, Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N‐Cadherin. Stem cells, 28(3): p. 564-572, (2010).
    37. Henrotin, Y., M. Mathy, C. Sanchez, and C. Lambert, Chondroitin sulfate in the treatment of osteoarthritis: from in vitro studies to clinical recommendations.
    49
    Therapeutic advances in musculoskeletal disease, 2(6): p. 335-348, (2010).
    38. Monfort, J., J.-P. Pelletier, N. Garcia-Giralt, and J. Martel-Pelletier, Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Annals of the rheumatic diseases, 67(6): p. 735-740, (2008).
    39. Caterson, B., F. Mahmoodian, J.M. Sorrell, T. Hardingham, M. Bayliss, S. Carney, et al., Modulation of native chondroitin sulphate structure in tissue development and in disease. Journal of Cell Science, 97(3): p. 411-417, (1990).
    40. Strehin, I., Z. Nahas, K. Arora, T. Nguyen, and J. Elisseeff, A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials, 31(10): p. 2788-2797, (2010).
    41. Ronca, F., L. Palmieri, P. Panicucci, and G. Ronca, Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis and Cartilage, 6, Supplement A: p. 14-21, (1998).
    42. Lim, J.J. and J.S. Temenoff, The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs. Biomaterials, 34(21): p. 5007-5018, (2013).
    43. Lim, J.J., T.M. Hammoudi, A.M. Bratt-Leal, S.K. Hamilton, K.L. Kepple, N.C. Bloodworth, et al., Development of nano-and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta biomaterialia, 7(3): p. 986-995, (2011).
    44. Park, J.S., H.J. Yang, D.G. Woo, H.N. Yang, K. Na, and K.H. Park, Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long‐term release of TGF‐β3 complexed with chondroitin sulfate. Journal of Biomedical Materials Research Part A, 92(2): p. 806-816, (2010).
    45. Lü, S., B. Li, B. Ni, Z. Sun, M. Liu, and Q. Wang, Thermoresponsive injectable hydrogel for three-dimensional cell culture: chondroitin sulfate bioconjugated with poly (N-isopropylacrylamide) synthesized by RAFT polymerization. Soft Matter, 7(22): p. 10763-10772, (2011).
    46. Varghese, S., N.S. Hwang, A.C. Canver, P. Theprungsirikul, D.W. Lin, and J. Elisseeff, Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biology, 27(1): p. 12-21, (2008).
    47. Levett, P.A., F.P. Melchels, K. Schrobback, D.W. Hutmacher, J. Malda, and T.J. Klein, A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta biomaterialia, 10(1): p. 214-223, (2014).
    48. Sawatjui, N., T. Damrongrungruang, W. Leeanansaksiri, P. Jearanaikoon, S. Hongeng, and T. Limpaiboon, Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.
    50
    Materials Science and Engineering: C, 52: p. 90-96, (2015).
    49. Nguyen, L.H., A.K. Kudva, N.S. Saxena, and K. Roy, Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials, 32(29): p. 6946-6952, (2011).
    50. Wei-Hao, L., Chondroitin Sulfate Induces Chondrogenesis in ATDC5 Cells. Master thesis, (2007).
    51. Hwang, N.S., S. Varghese, P. Theprungsirikul, A. Canver, and J. Elisseeff, Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials, 27(36): p. 6015-6023, (2006).
    52. Chen, W.-C., C.-L. Yao, I.-M. Chu, and Y.-H. Wei, Compare the effects of chondrogenesis by culture of human mesenchymal stem cells with various type of the chondroitin sulfate C. Journal of bioscience and bioengineering, 111(2): p. 226-231, (2011).
    53. Curl, W.W., J. Krome, E.S. Gordon, J. Rushing, B.P. Smith, and G.G. Poehling, Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 13(4): p. 456-460, (1997).
    54. Li, Q., D.-a. Wang, and J.H. Elisseeff, Heterogeneous-phase reaction of glycidyl methacrylate and chondroitin sulfate: mechanism of ring-opening-transesterification competition. Macromolecules, 36(7): p. 2556-2562, (2003).
    55. Fehrer, C. and G. Lepperdinger, Mesenchymal stem cell aging. Experimental Gerontology, 40(12): p. 926-930, (2005).
    56. Xue Shen Wu, A.S.H.a.Y., Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, (1992).
    57. Butler, D.L., N. Juncosa‐Melvin, G.P. Boivin, M.T. Galloway, J.T. Shearn, C. Gooch, et al., Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 26(1): p. 1-9, (2008).
    58. Chang, N.-J., C.-C. Lin, C.-F. Li, D.-A. Wang, N. Issariyaku, and M.-L. Yeh, The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials, 33(11): p. 3153-3163, (2012).
    59. van den Borne, M.P.J., N.J.H. Raijmakers, J. Vanlauwe, J. Victor, S.N. de Jong, J. Bellemans, et al., International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage,
    51
    15(12): p. 1397-1402, (2007).
    60. Permuy, M., D. Guede, M. López-Peña, F. Muñoz, J.-R. Caeiro, and A. González-Cantalapiedra, Effects of diacerein on cartilage and subchondral bone in early stages of osteoarthritis in a rabbit model. BMC veterinary research, 11(1): p. 1, (2015).
    61. Wang, L.-F., S.-S. Shen, and S.-C. Lu, Synthesis and characterization of chondroitin sulfate–methacrylate hydrogels. Carbohydrate Polymers, 52(4): p. 389-396, (2003).
    62. Seliktar, D., Designing Cell-Compatible Hydrogels for Biomedical Applications. Science, 336(6085): p. 1124-1128, (2012).
    63. Comolli, N., B. Neuhuber, I. Fischer, and A. Lowman, In vitro analysis of PNIPAAm–PEG, a novel, injectable scaffold for spinal cord repair. Acta biomaterialia, 5(4): p. 1046-1055, (2009).
    64. da Costa Sanches, S.C., F. de Vasconcelos, C.E.F. da Costa, P.S.B. Marinho, M.R. Guilherme, E.J.M. Tavares, et al., Thermal characterization study of chondroitin sulfate-co-N-isopropylacrylamide as drugs carrier. Journal of Thermal Analysis and Calorimetry, 120(1): p. 991-999, (2015).
    65. Yoshioka, H., M. Mikami, Y. Mori, and E. Tsuchida, A synthetic hydrogel with thermoreversible gelation. II. Effect of added salts. Journal of Macromolecular Science—Pure and Applied Chemistry, 31(1): p. 121-125, (1994).
    66. Yoshioka, H., Y. Mori, and J.A. Cushman, A synthetic hydrogel with thermoreversible gelation, III: an NMR study of the sol–gel transition. Polymers for Advanced Technologies, 5(2): p. 122-127, (1994).
    67. Reid, B., M. Gibson, A. Singh, J. Taube, C. Furlong, M. Murcia, et al., PEG hydrogel degradation and the role of the surrounding tissue environment. Journal of tissue engineering and regenerative medicine, 9(3): p. 315-318, (2015).
    68. van Dijk-Wolthuis, W., J. Hoogeboom, M. Van Steenbergen, S. Tsang, and W. Hennink, Degradation and release behavior of dextran-based hydrogels. Macromolecules, 30(16): p. 4639-4645, (1997).
    69. Chow, G., C. Knudson, and W. Knudson, Expression and cellular localization of human hyaluronidase-2 in articular chondrocytes and cultured cell lines. Osteoarthritis and Cartilage, 14(9): p. 849-858, (2006).
    70. Barker, M. and B. Seedhom, The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology, 40(3): p. 274-284, (2001).
    71. Farooque, T.M. and G.I.o. Technology, Biochemical and Mechanical Stimuli for Improved Material Properties and Preservation of Tissue-engineered Cartilage. Thesis. (2008)
    52
    72. Alexander, A., Ajazuddin, J. Khan, S. Saraf, and S. Saraf, Polyethylene glycol (PEG)–Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 88(3): p. 575-585, (2014).
    73. Hui, J.H., S.-W. Chan, J. Li, J.C. Goh, L. Li, X. Ren, et al., Intra-articular delivery of chondroitin sulfate for the treatment of joint defects in rabbit model. Journal of molecular histology, 38(5): p. 483-489, (2007).
    74. Nguyen, L.H., A.K. Kudva, N.L. Guckert, K.D. Linse, and K. Roy, Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Biomaterials, 32(5): p. 1327-1338, (2011).
    75. Watts, A.E., J.C. Ackerman-Yost, and A.J. Nixon, A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue Engineering Part A, 19(19-20): p. 2275-2283, (2013).
    76. Bowland, P., E. Ingham, L. Jennings, and J. Fisher, Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 229(12): p. 879-888, (2015).
    77. Szafranski, J.D., A.J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E.B. Hunziker, Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis. Osteoarthritis and Cartilage, 12(12): p. 937-946, (2004).
    78. Bryant, S.J., K.S. Anseth, D.A. Lee, and D.L. Bader, Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of Orthopaedic Research, 22(5): p. 1143-1149, (2004).
    79. Gratz, K.R., B.L. Wong, W.C. Bae, and R.L. Sah, The effects of focal articular defects on cartilage contact mechanics. Journal of Orthopaedic Research, 27(5): p. 584-592, (2009).
    80. Zanetti, M., E. Bruder, J. Romero, and J. Hodler, Bone marrow edema pattern in osteoarthritic knees: correlation between mr imaging and histologic findings 1. Radiology, 215(3): p. 835-840, (2000).
    81. Buermann, C.W., A.L. Oronsky, and M.I. Horowitz, Chondroitin sulfate-degrading enzymes in human polymorphonuclear leukocytes: Characteristics and evidence for concerted mechanism. Archives of biochemistry and biophysics, 193(1): p. 277-283, (1979).

    無法下載圖示 校內:2023-06-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE