| 研究生: |
蕭任呈 Hsiao, Jen-Cheng |
|---|---|
| 論文名稱: |
營建業勞工戶外高氣溫作業之熱生理危害即時監測技術之開發 Developing real-time monitoring techniques for assessing thermal physiological hazards of construction workers performing outdoor high temperature operations |
| 指導教授: |
蔡朋枝
Tsai, Perng-Jy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 營建業 、戶外高氣溫作業 、即時監測技術 、熱蓄積 、熱感知 |
| 外文關鍵詞: | Construction, Outdoor high temperature worker, Real time monitoring, Thermal storage, Thermal perception |
| 相關次數: | 點閱:36 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球每年平均氣溫持續上升,戶外作業高氣溫勞工是引發熱疾病之高危險族群,特別是營建業作業勞工,在長期暴露在高氣溫、高濕度、低空氣流動,及無遮蔭處的環境下,更容易產生熱衰竭、熱痙攣、及中暑等熱危害。因此,為瞭解熱環境之變化,目前已有諸多量測熱環境的感測器,不過因反應時間較長,導致無法即時瞭解現場的熱壓力分布,除此之外,因營建高變動的環境與多元的作業內容,難以準確評估勞工的熱生理危害狀況(如熱蓄積和脫水)。因此,本研究旨在開發營建業戶外高氣溫作業勞工熱生理危害評估即時監測技術,除了解決傳統儀器長時間反應之限制,達成即時追蹤勞工生理危害狀況,減少戶外作業勞工之熱危害風險。本研究針對105位勞工(28位鋼筋工、14位水泥灌漿工、28位模板工、10位施工架工、15位清潔工與10位穿著風扇背心之模板工)進行問卷調查與即時監測評估勞工之熱暴露,首先透過問卷進行描述性統計與結構方程式模式 (Structral equation model, SEM) 探討勞工對熱危害的知識、態度、行為以及當日工作的情況,接著利用ISO 7243之熱壓力 (Heat stress) 、ISO 8996之心率 (Heart rate) 轉換代謝率 (Metabolic rate) 與ISO 7933之預測熱應變模式 (Predicted Heat Strain model, PHS) 計算熱蓄積 (Thermal storage),推估勞工之允許暴露時間 (Allowable Exposure Time, AET),同時調查勞工實際工作之熱感知 (Thermal perception) 。數據分析使用敏感度分析 (Sensitive analysis) 找出AET之最大影響因子,以及使用時間序列分析 (Time series analysis) 探討熱蓄積與熱感知之趨勢分布。本研究問卷結果顯示,勞工針對睡眠與補充水分及電解質有非常好的自我防護意識;結構方程式分析結果也呈現每個構面對於睡眠(1.44、1.37)與補充電解質(2.16、1.77)等題項有好的正相關。然而,現場勞工可能因知識不足,導致與態度及行為之二構面(-2.49、-1.12)呈現負影響,建議加強勞工對熱危害之相關知識,以減少熱危害之風險。此外,模板、鋼筋、水泥灌漿、施工架、清潔與模板(風扇背心)六個工種當中,水泥灌漿的平均代謝率為162.50 W/m2,熱蓄積達37.94 °C,使得該族群之容許暴露時間僅66.07 mins,為優先改善之族群,敏感度以代謝率 (Metabolic rate, M) 最高,因此應針對勞工熱負荷 (Work load) 進行改善,以嘗試降低勞工之代謝率。最後,熱蓄積與熱感知的趨勢結果,以「即時」的正相關性(0.119)最好,當勞工在工作時,一旦體溫上升至危及健康之程度時,會立即感到不適。
Global temperatures continue to rise, putting outdoor workers, especially those in construction, at high risk for heat-related illnesses such as heat exhaustion, heat cramps, and heatstroke. Prolonged exposure to high temperatures, high humidity, poor airflow, and lack of shade further increases these risks. This study aims to develop real-time monitoring technology to assess heat-related physiological hazards for construction workers. By addressing the slow response times of traditional instruments, this technology enables timely tracking of workers' conditions, reducing the risk of heat-related injuries. A total of 105 workers (28 rebar workers, 14 grouting workers, 28 formworkers, 10 scaffolders, 15 cleaners, and 10 fan jacket-wearing formworkers) were surveyed and monitored. Heat exposure was analyzed using Structural equation modeling (SEM), ISO standards (ISO 7243 for heat stress, ISO 8996 for metabolic rate, and ISO 7933 for predicted heat strain), sensitivity analysis, and time series analysis to evaluate thermal storage, thermal perception, and allowable exposure time (AET). Survey results indicated strong self-awareness regarding hydration and sleep but revealed a lack of sufficient knowledge, negatively impacting attitudes and behaviors. Among the six worker groups, grouting workers had the highest metabolic rate (162.50 W/m²) and thermal storage (37.94°C), leading to an AET of only 66.07 minutes, making them the priority group for intervention. Sensitivity analysis identified metabolic rate as the most influential factor on AET, underscoring the importance of managing workload to reduce risks. Time series analysis revealed a significant real-time correlation (0.119) between thermal storage and thermal perception, indicating workers feel discomfort immediately when body temperature rises to hazardous levels. These findings highlight the importance of real-time monitoring and targeted interventions to enhance worker safety in high-temperature environments.
Aaron W, Glenn EL, Brenda LJ, Richard JT, Sheila BA, Dawn LC, Richard GG, Michael JH. 2018. Evaluation of Occupational Exposure Limits for Heat Stress in Outdoor Workers – United States, 2011-2016. Morbidity and Mortality Weekly Report.
Adelio RC, Divo AQ. 2009. Physical modelling of globe and natural wat bulb temperatures to predict WBGT heat stress index in outdoor environments. Int J Biometeorol 53: 221-230.
Arbury S, Jacklitsch B, Farquah O, Hodgson M, Lamson G, Martin H, Profitt A. 2014. Heat illness and death among workers – United States, 2012-2013. Occupational Safety and Health Administration (OSHA). The Morbidity and Mortality Weekly Report (MMWR) 63(31):661-665.
Bentler PM. 1983. Comfirmatory factor analysis via noniterative estimation: A fast, inexpensive method. Journal of Marketing Research. 19: 417-424.
Calkins MM, Bonauto D, Hajat A, Lieblich M, Seixas N, Sheppard L, Spector JT. 2019. A case-crossover study of heat exposure and injury risk among outdoor construction workers in Washington State. Scandinavian Journal of Work, Environment and Health 45(6):588-599.
Carmines EG and Mclver JP. 1981. Analyzing models with unobserved variebles: Analysis of covariance structure. Social Measurement: Current Issues. 65-115.
Chen WY, Lo CL, Chen CP, Juang YJ, Yoon C, Tsai PJ. 2014. Prioritizing Factors Associated with Thermal Stresses Imposed on Workers in Steel and Iron Casting Industries Using the Monte Carlo Simulation and Sensitivity Analysis. J Occup Health. 56: 505–510.
Clark J, Konrad CE. 2023. Observations and Estimates of Wet-Bulb Globe Temperature in Varied Microclimates. Journal of Applied Meteorology and Climatology. Volume 63: Issue 2.
Dong XS, West GH, Holloway-Beth A, Wang X, Sokas RK. 2019. Heat‐related deaths among construction workers in the United States. American Journal of Industrial Medicine 62:1047-1057.
Donoghue ER, Grahan MA, Jentzen JM, Lifschultz B, Luke JL, Mirchandani HG. 1997. Criteria for the diagnosis of heat-related deaths: National Association of Medical Examiners: Position paper. National Association of Medical Examiners Ad Hoc Committee on the Definition of Heat-Related Fatalities. The American Journal of Forensic Medicine and Pathology 18(1): 11-4.
Edward A, Joshph I. 2012. Fundamentals of Building Construction: Materials and Methods: Fifth edition.
Fatemah MA, Muna E, Zahra KA, Abdallah YN. 2023. Perceived Knowledge, Attitude, and Practices (KAP) and Fear toward COVID-19 among Patients with Diabetes Attending Primary Healthcare Centers in Kuwait. 20 (3). International Journal of Environmental Research and Public Health.
Franck B, Oliver G, Grégoire PM. 2015. Emerging Environmental and Weather Challenges in Outdoor Sports. Climate (3) 492-521.
Geoge D and Mallery P. 2003. SPSS for Windows step by step: A simple guide and reference. 11.0 Update (4th edtion). Boston: Allyn and Bacon.
Geroge AG, Flora G, Leonidas GI, Ioannis K, Andreas DF. 2023. Developing a Feasible Integrated Framework for Occupational Heat Stress Protection: A Step Towards Dafer Working Environments. Medicina del Lavoro 114(5).
Gover M. 1938. Mortality during periods of excessive temperature. Public Health Rep 53:1122-43.
Guo CY, Huang XY, Kuo PC, Chen YH. Extensions of the distributed lag non-linear model (DLNM) to account for cumulative mortality. Environmental Science and Pollution Research. 38679-38688.
Hamed J, Ahmad S, Abdolhalim R, Hamidreza H. 2023. Comparison of Outdoor Environmental Heat Index (OEHI) and Other Environmental and Physiological Heat Indices: A case of Outdoor Workers in Low Thermal Stress Conditions. J Health Sci Surveillance Sys Vol 11 No 4.
Hu L and Bentler PM. 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structrual Equation Modeling. 6(1) 1-55.
Intergovernmental Panel on Climate Change (IPCC). 2023. AR6 Synthesis Report: Climate Change.
International Organization for Standardization(ISO). 2007. Ergonomics of the thermal environment – Estimation of thermal insulation and water vapour resistance of a clothing ensemble (ISO 9920).
International Organization for Standardization(ISO). 2017. Ergonomics of the thermal environment – Assessment of heat stress using the WBGT (wet bulb globe temperature) index (ISO 7243).
International Organization for Standardization(ISO). 2021. Ergonomics of the thermal environment – Determination of metabolic rate (ISO 8996).
International Organization for Standardization(ISO). 2023. Ergonomics of the thermal environment –Analytical determination and interpretation of heat stress using calculation of the predicted heat strain (ISO 7933).
Ioannis M, Aglaia K, Antigoni K, Evangelia M, Ioannis P, Maria T, Olympia K, Parisis G, Petros G. 2024. Predictors of Knowledge, Attitudes and Practice Regarding Heat Waves: An Exploratory Cross-Sectional Study in Greece. Climate. 12(3).
Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim JH, Turner N. 2016. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health 106.
Jeremy JH, Shubhayu S, George L. 2014. Summertime Acute Heat Illness in U.S. Emergency Department from 2006 through 2010: Analysis of a Nationally Representative Sample. Environ Health Perspect Vol. 122(11): 1209-1215.
Jian C, Zhiwei X, Hilary B, Prescott V, Ning W, Yuzhou Z, Hong S, Shilu T, Wenbiao H. 2019. Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environmental Research 177.
Jing L, Xin X, Guoyong D, Yun Z, Ruixia Z, Fuzhong X, Jinghong G, Jun Y, Baofa J, Qiyong L. 2016. A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China. Int. J. Environ. Res. Public Health. 13(7).
Jorgenson DW. 1966. Rational distributed lag functions. 34 (1): 135–149. Econometrica. The Econometric Society.
Jun Y, Peng Y, Jimin S, Boguang W, Maigeng Z, Mengmeng L, Shilu T, Bohan M, Yuming G, Qiyong L. 2019. Heatwave and mortality in 21 major cities: Definition, vulnerability and implications. Science of the Total Environment 649 695-702.
Leonidas GI, Lydia T, Konstantinos M, Andreas DF. 2019. A free software to predict heat strain according to the ISO 7933:2018. Industrial Health. 57 711-720.
Lin S. 2025. Language barrier biggest problem for employers of migrant workers: Survey. Focus Taiwan. https://focustaiwan.tw/society/202501060018.
Lisette K, Erica CB, Luc VZ, Jeroen K. 2021. Application and performance of Kestrel sensors for assessing thermal comfort in outdoor built environments. Amsterdam University of Applied Sciences.
Melas E, Mela A, Tsiros I, Varelidis G. 2023. Evaluation of Urban Bioclimatic Measurements towards an Easier and more Affordable MethodofInstrumental Monitoring. Environmental sciences proceedings. 26: 142.
Mendes JCAF, Gameiro da Silva MC. 2004. Development of a new thermal environment meter responding both to sensible and latent heat fluxes. Measurement Science and Technology 15: 5.
Michael LH. 2024. How the Forerunner 165 compared for steps, GPS, and heart rate against the Fitbit Charge 6 and COROS PACE 3. Android Central.
Moran DS, Mendal L. 2002. Core Temperature Measurement. Sport Medicine 32(14): 879-885.
National Insistute for Occupational Safety and Health (NIOSH). 2024. Heat stress and Workers.
Park JY, Lee JH, Kang MY, Jang TW, Kim HR, Kim SY, Lee J. 2023. Development of algorithm for work intensity evaluation using excess overwork index of construction workers with real-time heart rate measurement device. Annals of Occupational and Environmental Medicine.
Paurakh LR, Gabriel N. 2020. Feasibility of Continuous Monitoring of Core Body Temperature Using Chest-worn Patch Sensor. Conference: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society.
Rowlinson S, Jia YA. 2014. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry. The Annals of Occupational Hygiene 58(3): 326-339.
Ruofei R, Hongye L, Jie Zhang. 2024. Knowledge, attitudes, and practices among Chinese reproductive-age women toward uterine adenomyosis. 11. Frontiers in Medicine.
Saber Y, Abdulaziz M, Yara Y, Fuad M, Anas K. 2019. Knowledge, Attitude and Practice of Pilgrims Regarding Heat-Related Illnesses during the 2017 Hajj Mass Gathering. Int. J. Environ. Res. Public Health. 16(17).
Samantha LT. 2019. Using Predicted Heat Strain to Evaluate Sustainable Exposures. University of South Florida.
Seltenrich N. 2015. Between Extremes: Health Effects of Heat and Cold. Environ Health Perspect 123(11): A275-80.
Sobol IM. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. 55 (1-3) 271-280. MATH COMPUT SIMULAT.
TLVs and BEIs Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. The American Conference of Governmental Industrial Hygienists. 2023.
Wang F, Kuklane K, Gao C, Holmér I. 2011. Can the PHS model (ISO 7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments? Physiological Measurement 32: 239-249.
Xuren W, Demeng X, Xisha L, Yixin W, Kaiwen W, Shuogui X, Li G. 2021. Knowledge, Attitudes, and Practices of Military Personnel Regarding Heat-Related Illness Risk Factors: Results of a Chinese Cross-Sectional Study. Front Publicc Health. 9:707264.
Yao R, Li Y, Du C, Li B. 2018. A ‘heart rate’-based model (PHSHR) for predicting personal heat stress in dynamic working environments. Building and Environment. 135 318-329.
Yeh CK, Wang LC, Shih YP, Jou GT. 2017. Establishment of ISO 7933 to explore the thermal physical response of the clothing to the human body in Taiwan cities. Taiwan Textile Research Journal 27.
Yi W, Chan APC, Wang X, Wang J. 2016. Development of an early-warning system for site work in hot and humid environments: A case study. Automation in Construction 62: 101-113.
Yun SO, LEE JH, LEE J, Kim CY. 2019. A Flexible Wireless Sensor Patch for Real-Time Monitoring of Heart Rate and Body Temperature. IEICE TRANSACTIONS on Information and Systems. Vol. E102-D.
Zhao Q, Guo Y, Ye T, Gasparrini A, Tong S, Overcenco A. 2021. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet planetary health. Volume 5: Issue 7. E415-E425.
日本體育協會. 運動活動中的熱傷害預防指南. 2019.
交通部中央氣象署. 1880-2020全球平均氣溫上升趨勢圖.
邱郁婷、曾宣瑜、柯吟臻、莊侑哲. 冷熱危害評估指標探討. 2007. 長榮大學.
厚生労働省. 2013. 第 12 次労働災害防止計画.
張芳慈, 王玉純. 2017. 臺灣地區極端高溫對健康影響之脆弱度及修飾因子分析. 中央大學環境工程學系碩士論文.
莊侑哲. 2018. 營造業戶外工作者夏季高溫熱危害預防策略. 中國工程師學會.
陳元和、傅承珊. 月經週期對運動能力影響相關文獻之探討. 淡江體育第14期. 2011.
陳志勇, 龍世俊. 2017. 利用大數據分析建置我國戶外高氣溫環境熱壓力與體力負荷模式. 勞動部勞動及職業安全衛生研究所.
陳志勇, 龍世俊. 2017. 我國戶外高氣溫環境熱壓力現況分析與評估. 勞動部勞動及職業安全衛生研究所.
陳信宏, 溫士逸. 2012. 營建施工空間綜合溫度熱指數與勞工生理訊號監測及警示模組之探討. 勞動部勞動及職業安全衛生研究所.
陳信宏, 龍世俊. 2019. 營造業熱壓力與體力負荷研究. 勞動部勞動及職業安全衛生研究所.
陳振菶, 黃彬芳, 陳旺儀. 2014. 國內高氣溫戶外工作者熱危害預防及檢查作法研究. 勞動部勞動及職業安全衛生研究所.
勞動部. 2014. 高溫作業勞工作息時間標準.
勞動部. 2019. 高氣溫戶外作業勞工熱危害預防指引.
勞動部職業安全衛生署. 2019. 高氣溫戶外作業熱危害預防行動資訊網.
衛生福利部國民健康署. 2021. 夏日炎炎 6大高危險族群慎防熱傷害!
衛生福利部國民健康署. 2023. 熱傷害的種類,有甚麼症狀?