簡易檢索 / 詳目顯示

研究生: 陳昭順
Chen, Chau-Shun
論文名稱: 基材硬度造成細胞特異性反應時其收縮力分布之探討
Intracellular traction force distribution in cell type-specific responses to substratum stiffness
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 49
中文關鍵詞: 力學分佈微米柱陣列感測系統細胞內部收縮力基材硬度
外文關鍵詞: micro-fabricated post array detector, force distribution, substratum stiffness, intracellular traction force
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基材之物理性質於in vitro與in vivo中對調控細胞基本功能之影響甚鉅。先前實驗室發現上皮細胞培養於柔軟之collagen gel上明顯提升細胞凋亡的比率,然而於轉型細胞與纖維母細胞則無此一現象。我們認為細胞內部力學之分佈與方向,對基材硬度反應之細胞延展與存活扮演重要角色。為了印證此假說,我們將不同細胞株培養於不同軟硬度之polyacrylamide gel上,發現LLC-PK1 (上皮細胞),HeLa (轉型細胞) 和NIH-3T3 (纖維母細胞)於不同軟硬度上,分別展現細胞特異性之延展能力與各自對基材硬度之適應範圍。在LLC-PK1中,MLC-p分布於cortical actin之中央,然而在NIH-3T3與HeLa中,MLC-p則是均勻的散佈於橫跨細胞兩端之stress fibers。為了測量奈米牛頓 (nN) 等級下之細胞內部收縮力,實驗室導入了一微米柱陣列感測器系統(microfabricated post-array-detector, mPAD)。NIH-3T3與HeLa皆展現出平行於長軸之雙方向力學分佈與較低之平均收縮力,但是LLC-PK1細胞則顯示了較高的平均收縮力但卻無特定之方向。更進一步,TGF- 誘發型態上被拉長的LLC-PK1以近乎NIH-3T3之方式,重新安排細胞內部力學分佈與方向。這些結果顯示,上皮細胞與轉型細胞或纖維母細胞支不同之處,在於其等向性之力學分佈與產生較高之收縮力。在軟性基材上,上皮細胞內等向性分佈之骨架不利於維持有效之力學結構,導致細胞於基材上延展能力降低,進而造成細胞凋亡發生。

    Substrate mechanical properties play important role for the regulation of cellular function in vitro and in vivo. Previous study in our lab demonstrated that soft collagen gel induced apoptosis in epithelial cell but not in fibroblast and transformed cells. We hypothesized that the force orientation and distribution in response to substratum stiffness played important role for cell spreading and survival. In order to test the hypothesis, we cultured different cells on polyacrylamide gel with different rigidity modulus. We found that LLC-PKI (epithelia), HeLa (transformed cell) and NIH-3T3 (fibroblast) showed cell type-specific spreading ability and adaption to substratum stiffness. Immunofluorescent studies that myosin light chain phosphorylation (MLCp) was located in the center of cortical actin in LLC-PK1 cells, whereas MLCp was evenly located on stress fibers in NIH-3T3 and HeLa cells. To measure intracellular traction force in nano-Newton scale, we established micro-fabricated post array detector (mPAD). NIH-3T3 and HeLa demonstrated bi-directional force distribution with lower average force, whereas LLC-PK1 displayed higher average force without particular direction. In addition, TGF- induced elongated LLC-PK1 cells rearranged their traction forces similarly to that of NIH-3T3 cells. These findings indicate that epithelial cells orientate intracellular force in isotropy and generate higher intracellular tension than fibroblast or transformed cells. The isotropic cytoskeleton distribution in epithelial cells could be disadvantageous for maintaining mechanical force on soft substrate.

    Abstract I 中文摘要 II 誌謝 III Content V Figure content VI Introduction 1 Materials and methods 7 Results 13 Discussion 19 Figure legends 29 References 33 Figures 39

    Anton, I. M., Saville, S. P., Byrne, M. J., Curcio, C., Ramesh, N., Hartwig, J. H. and Geha, R. S. (2003). WIP participates in actin reorganization and ruffle formation induced by PDGF. J Cell Sci 116, 2443-51.
    Bates, R. C., Pursell, B. M. and Mercurio, A. M. (2007). Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185, 29-39.
    Bershitsky, S. Y. and Tsaturyan, A. K. (1995). Force generation and work production by covalently cross-linked actin-myosin cross-bridges in rabbit muscle fibers. Biophys J 69, 1011-21.
    Bhadriraju, K. and Hansen, L. K. (2002). Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res 278, 92-100.
    Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M. and Moses, H. L. (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276, 46707-13.
    Bishop, A. L. and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem J 348 Pt 2, 241-55.
    Bremel, R. D. and Shaw, M. E. (1978). Actomyosin from mammary myoepithelial cells and phosphorylation by myosin light chain kinase. J Dairy Sci 61, 1561-6.
    Chang, S. G., Toth, K., Black, J. D., Slocum, H. K., Perrapato, S. D., Huben, R. P. and Rustum, Y. M. (1992). Growth of human renal cortical tissue on collagen gel. In Vitro Cell Dev Biol 28A, 128-35.
    Chen, C. S. and Ingber, D. E. (1999). Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthritis Cartilage 7, 81-94.
    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. and Ingber, D. E. (1997). Geometric control of cell life and death. Science 276, 1425-8.
    Chiu, W. T., Wang, Y. H., Tang, M. J. and Shen, M. R. (2007). Soft substrate induces apoptosis by the disturbance of Ca2+ homeostasis in renal epithelial LLC-PK1 cells. J Cell Physiol 212, 401-10.
    Clements, R. T., Minnear, F. L., Singer, H. A., Keller, R. S. and Vincent, P. A. (2005). RhoA and Rho-kinase dependent and independent signals mediate TGF-beta-induced pulmonary endothelial cytoskeletal reorganization and permeability. Am J Physiol Lung Cell Mol Physiol 288, L294-306.
    Danowski, B. A. (1989). Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93 ( Pt 2), 255-66.
    Dartsch, P. C., Ritter, M., Haussinger, D. and Lang, F. (1994). Cytoskeletal reorganization in NIH 3T3 fibroblasts expressing the ras oncogene. Eur J Cell Biol 63, 316-25.
    Edlund, S., Landstrom, M., Heldin, C. H. and Aspenstrom, P. (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13, 902-14.
    Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-89.
    Frearson, N. and Perry, S. V. (1975). Phosphorylation of the light-chain components of myosin from cardiac and red skeletal muscles. Biochem J 151, 99-107.
    Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H. and Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27, 1218-30.
    Galliher, A. J. and Schiemann, W. P. (2006). Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8, R42.
    Georges, P. C. and Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. J Appl Physiol 98, 1547-53.
    Ghosh, K., Pan, Z., Guan, E., Ge, S., Liu, Y., Nakamura, T., Ren, X. D., Rafailovich, M. and Clark, R. A. (2007). Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28, 671-9.
    Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G. et al. (2007). Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561-75.
    Goldmann, W. H. (2002). Mechanical aspects of cell shape regulation and signaling. Cell Biol Int 26, 313-7.
    He, H., Watanabe, T., Zhan, X., Huang, C., Schuuring, E., Fukami, K., Takenawa, T., Kumar, C. C., Simpson, R. J. and Maruta, H. (1998). Role of phosphatidylinositol 4,5-bisphosphate in Ras/Rac-induced disruption of the cortactin-actomyosin II complex and malignant transformation. Mol Cell Biol 18, 3829-37.
    Hilenski, L. L., Ma, X. H., Vinson, N., Terracio, L. and Borg, T. K. (1992). The role of beta 1 integrin in spreading and myofibrillogenesis in neonatal rat cardiomyocytes in vitro. Cell Motil Cytoskeleton 21, 87-100.
    Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G. and Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12, 2730-41.
    Hoffman, R. M., Connors, K. M., Meerson-Monosov, A. Z., Herrera, H. and Price, J. H. (1989). A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro. Proc Natl Acad Sci U S A 86, 2013-7.
    Huxley, H. E. (1969). The mechanism of muscular contraction. Science 164, 1356-65.
    Ilya Levental, P. C. G. a. P. A. J. (2007). Soft biological materials and their impact on cell function. Soft matter.
    Ingber, D. E. (1997a). Integrins, tensegrity, and mechanotransduction. Gravit Space Biol Bull 10, 49-55.
    Ingber, D. E. (1997b). Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59, 575-99.
    Ingber, D. E. (2003). Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116, 1397-408.
    Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., Beug, H. and Grunert, S. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156, 299-313.
    Kidoaki, S. and Matsuda, T. (2007). Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy. J Biomed Mater Res A 81, 803-10.
    Kobayashi, H., Tsuruchi, N., Sugihara, K., Kaku, T., Saito, T., Kamura, T., Tsukamoto, N., Nakano, H. and Taniguchi, S. (1993). Expression of alpha-smooth muscle actin in benign or malignant ovarian tumors. Gynecol Oncol 48, 308-13.
    Kokkinos, M. I., Wafai, R., Wong, M. K., Newgreen, D. F., Thompson, E. W. and Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 185, 191-203.
    Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E. and Ingber, D. E. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90, 3762-73.
    Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano, T., Kaibuchi, K. and Ito, M. (1997). Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272, 12257-60.
    Lambert Ch, A., Nusgens, B. V. and Lapiere Ch, M. (1998). Mechano-sensing and mechano-reaction of soft connective tissue cells. Adv Space Res 21, 1081-91.
    Lanzetti, L., Di Fiore, P. P. and Scita, G. (2001). Pathways linking endocytosis and actin cytoskeleton in mammalian cells. Exp Cell Res 271, 45-56.
    Lemmon, C. A., Sniadecki, N. J., Ruiz, S. A., Tan, J. L., Romer, L. H. and Chen, C. S. (2005). Shear force at the cell-matrix interface: enhanced analysis for microfabricated post array detectors. Mech Chem Biosyst 2, 1-16.
    Li, F., Li, B., Wang, Q. M. and Wang, J. H. (2008). Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motil Cytoskeleton 65, 332-41.
    Lo, C. M., Wang, H. B., Dembo, M. and Wang, Y. L. (2000). Cell movement is guided by the rigidity of the substrate. Biophys J 79, 144-52.
    Masszi, A., Di Ciano, C., Sirokmany, G., Arthur, W. T., Rotstein, O. D., Wang, J., McCulloch, C. A., Rosivall, L., Mucsi, I. and Kapus, A. (2003). Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol 284, F911-24.
    Matthews, B. D., Overby, D. R., Mannix, R. and Ingber, D. E. (2006). Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119, 508-18.
    Mueller, S. C., Kelly, T., Dai, M. Z., Dai, H. N. and Chen, W. T. (1989). Dynamic cytoskeleton-integrin associations induced by cell binding to immobilized fibronectin. J Cell Biol 109, 3455-64.
    Murthy, K. S., Zhou, H., Grider, J. R., Brautigan, D. L., Eto, M. and Makhlouf, G. M. (2003). Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway. Biochem J 374, 145-55.
    Park, H. B., Golubovskaya, V., Xu, L., Yang, X., Lee, J. W., Scully, S., 2nd, Craven, R. J. and Cance, W. G. (2004). Activated Src increases adhesion, survival and alpha2-integrin expression in human breast cancer cells. Biochem J 378, 559-67.
    Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M. and Weed, S. A. (2000). Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606-13.
    Pelletier, A. J., Kunicki, T., Ruggeri, Z. M. and Quaranta, V. (1995). The activation state of the integrin alpha IIb beta 3 affects outside-in signals leading to cell spreading and focal adhesion kinase phosphorylation. J Biol Chem 270, 18133-40.
    Petroll, W. M., Ma, L. and Jester, J. V. (2003). Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J Cell Sci 116, 1481-91.
    Pilkington, M. F., Sims, S. M. and Dixon, S. J. (2001). Transforming growth factor-beta induces osteoclast ruffling and chemotaxis: potential role in osteoclast recruitment. J Bone Miner Res 16, 1237-47.
    Polte, T. R., Eichler, G. S., Wang, N. and Ingber, D. E. (2004). Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am J Physiol Cell Physiol 286, C518-28.
    Rabodzey, A., Alcaide, P., Luscinskas, F. W. and Ladoux, B. (2008). Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J.
    Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R. and Navajas, D. (2008). Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 94, 4984-95.
    Rotsch, C. and Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78, 520-35.
    Rovensky Yu, A., Domnina, L. V., Ivanova, O. and Vasiliev, J. M. (2001). Responses of epithelial and fibroblast-like cells to discontinuous configuration of the culture substrate. Membr Cell Biol 14, 617-27.
    Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. and Ladoux, B. (2007). Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci U S A 104, 8281-6.
    Schoenwaelder, S. M. and Burridge, K. (1999). Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11, 274-86.
    Sims, J. R., Karp, S. and Ingber, D. E. (1992). Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci 103 ( Pt 4), 1215-22.
    Sniadecki, N. J., Anguelouch, A., Yang, M. T., Lamb, C. M., Liu, Z., Kirschner, S. B., Liu, Y., Reich, D. H. and Chen, C. S. (2007). Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci U S A 104, 14553-8.
    Solon, J., Levental, I., Sengupta, K., Georges, P. C. and Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93, 4453-61.
    Spudich, J. A. (2001). The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol 2, 387-92.
    Suetsugu, S. and Takenawa, T. (2003). Regulation of cortical actin networks in cell migration. Int Rev Cytol 229, 245-86.
    Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K. and Chen, C. S. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100, 1484-9.
    Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S. and Matsumura, F. (2004). Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164, 427-39.
    Wang, N., Naruse, K., Stamenovic, D., Fredberg, J. J., Mijailovich, S. M., Tolic-Norrelykke, I. M., Polte, T., Mannix, R. and Ingber, D. E. (2001). Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A 98, 7765-70.
    Wang, Y. H., Chiu, W. T., Wang, Y. K., Wu, C. C., Chen, T. L., Teng, C. F., Chang, W. T., Chang, H. C. and Tang, M. J. (2007). Deregulation of AP-1 proteins in collagen gel-induced epithelial cell apoptosis mediated by low substratum rigidity. J Biol Chem 282, 752-63.
    Wang, Y. L. and Pelham, R. J., Jr. (1998). Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298, 489-96.
    Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. and Carragher, N. O. (2004). SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 24, 8113-33.
    Xia, N., Thodeti, C. K., Hunt, T. P., Xu, Q., Ho, M., Whitesides, G. M., Westervelt, R. and Ingber, D. E. (2008). Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. FASEB J 22, 1649-59.
    Xu, Z., Shen, M. X., Ma, D. Z., Wang, L. Y. and Zha, X. L. (2003). TGF-beta1-promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-beta1-enhanced cell migration in SMMC-7721 cells. Cell Res 13, 343-50.
    Yap, A. S., Keast, J. R. and Manley, S. W. (1994). Thyroid cell spreading and focal adhesion formation depend upon protein tyrosine phosphorylation and actin microfilaments. Exp Cell Res 210, 306-14.
    Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V. and Janmey, P. A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60, 24-34.

    下載圖示 校內:2009-08-22公開
    校外:2009-08-22公開
    QR CODE