簡易檢索 / 詳目顯示

研究生: 葛理妮
Puteri, Narendra Gharini
論文名稱: 微波退火對冷燒結NdFeB磁性能的影響
Effect of Microwave Annealing on NdFeB Magnetic Properties Fired by Cold Sintering Technique
指導教授: 林士剛
Lin, Shih-Kang
共同指導教授: 李文熙
Lee, Wen Hsi
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 64
中文關鍵詞: 退火密度微波NdFeB
外文關鍵詞: Annealing, Density, Microwave, NdFeB
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與SmCo相比, 釹鐵硼由於性能好、成本相對較低以及對環境的負面影響小, 因此是最被廣泛使用的永磁材料. 然而, 經由3D列印以增加產量而生產的NdFeB仍然需要高溫處理, 這使其在商業上不可行.
    在這項研究中, 冷燒結過程將應用於使用不同酸度的添加劑. 燒結過程是由於酸性溶液和壓力的存在而發展的. 為了確定微波輻射是否可以產生磁性並表現出良好的磁性質, 在冷燒結過程之後還進行了微波退火.
    密度測量結果顯示, 在室溫下以1 MPa的酸溶液燒結的NdFeB MQP-S-11-9含有 3mL, 5mL, 7mL, 和 9mL 的草酸和 10mL 的硫酸分別顯示出 77.9%, 81.79 %, 84.07%, 85.47 % 相對密度. 用7mL草酸樣品達到的最佳磁性能. 經過兩階段微波退火, 第一階段是200W持續5分鐘, 重複兩次, 而第二階段是400W持續10分鐘, 重複六次後, 剩磁, 矯頑力和能量密度分別增加到 0.836T, 388.7kA/m, 和 101. 1kJ/m$^3$. MQU-F與微波退火的結合也增強了磁性能. 因此, 本研究中使用的低壓和低溫使其有可能用於進一步的3D應用.

    NdFeB is the most widely used permanent magnet material because of its good performance, relatively low cost and low negative impact to the environment compared to SmCo. However, producing NdFeB by 3D printing to increase the production still needing high temperature processing which makes it impractical for commercial use.
    In this study, cold sintering process will be applied to using different acidity of additive. The sintering is process developed by the existence of acidic solution and pressure. The microwave annealing also performed followed the cold sintering process with the aim of determining if microwave radiation can generate the magnetism and exhibit good magnetic performance.
    The density measurement shows that NdFeB MQP-S-11-9 sintered at room temperature with 1 MPa with acid solution contain 3mL, 5mL, 7mL, and 9mL of oxalic acid with 10mL of sulfuric acid exhibit 77.9\%, 81.79\%, 84.07\%, 85.47\% relative density, respectively shows the best magnetic properties reached by sample with 7mL oxalic acid. The remanence, coercivity, and energy density were increased respectively to 0.836T, 388.7kA/m and 101.1 kJ/m$^3$ after two step microwave anneling first step 200W for 5minutes for two times repetition and second step 400W for 10seconds for six times repetition. The combination of MQU-F together with microwave annealing also enhanced the magnetic properties. Therefore, the low pressure and temperature used in this study make it possible to be used for further 3D application.

    中文摘要....................i Abstract ....................ii Acknowledgements .................iii Contents ....................iv List of Tables ...................vi List of Figures ..................viii 1 Introduction ..................1 1.1 Foreword ..................1 1.2 Scope of this study ...............3 1.3 Objective of the study ..............3 1.4 Thesis structure ................4 2 Literature Review .................5 2.1 Magnetic properties of material ...........5 2.2 Studied material: Nd2Fe14B ............10 2.3 Sintering Process ...............13 2.4 Hydrothermal Sintering ..............16 2.5 Cold Sintering Process ..............17 2.6 Microwave Annealing Process ............20 3 Methods ...................23 3.1 Materials .................23 3.2 Experimental Procedure .............25 3.2.1 Additive Determinations ...........25 3.2.2 Bulk formation ..............26 3.2.3 MQU-F additition .............26 3.2.4 Microwave Annealing Process ..........27 3.3 Characterizations and Measurements ..........27 3.3.1 Density Measurement ............27 3.3.2 Magnetic Properties Analysis ..........28 4 Result and Discussion ................31 4.1 Density ..................31 4.2 Magnetic Properties ..............34 4.2.1 NdFeB MQP-S-11-9 ............35 4.2.2 NdFeB combination MQP-S-11-9 and MQU-F .....39 4.3 Morphology and Structure .............47 5 Conclusions ..................56 References ....................58

    [1] Nicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge University Press, 2010.
    [2] Allan H Morrish. The physical principles of magnetism. The Physical Principles of Magnetism, by Allan H. Morrish, pp. 696. ISBN 0-7803-6029-X. Wiley-VCH, January 2001., page 696, 2001.
    [3] JMD Coey. Permanent magnets: Plugging the gap. Scripta Materialia, 67(6):524{ 529, 2012.
    [4] Oliver Gut eisch, Matthew A Willard, Ekkes Bruck, Christina H Chen, SG Sankar, and J Ping Liu. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy e cient. Advanced materials, 23(7):821{842, 2011.
    [5] Jacim Jacimovic, Federico Binda, Lorenz G Herrmann, Felix Greuter, Jessica Genta, Micha Calvo, Tomaz Tomse, and Reinhard A Simon. Net shape 3d printed ndfeb permanent magnet. arXiv preprint arXiv:1611.05332, 2016.
    [6] Tobias Kolb, Florian Huber, Basri Akbulut, Christoph Donocik, Nikolaus Urban, Dominik Maurer, and Jorg Franke. Laser beam melting of ndfeb for the production of rare-earth magnets. In 2016 6th International Electric Drives Production Conference (EDPC), pages 34{40. IEEE, 2016.
    [7] Wen Chou. A study on ndfeb materials fabricated by using cold sintering technology, 2019, to be published.
    [8] David J Gri ths. Introduction to electrodynamics, 2005.
    [9] Amikam Aharoni et al. Introduction to the Theory of Ferromagnetism, volume 109. Clarendon Press, 2000.
    [10] S Palagummi and F-G Yuan. Magnetic levitation and its application for low frequency vibration energy harvesting. In Structural Health Monitoring (SHM) in Aerospace Structures, pages 213{251. Elsevier, 2016.
    [11] Hilda WF Sung and Czeslaw Rudowicz. A closer look at the hysteresis loop for ferromagnets-a survey of misconceptions and misinterpretations in textbooks. arXiv preprint cond-mat/0210657, 2002.
    [12] K Strnat. The hard-magnetic properties of rare earth-transition metal alloys. IEEE Transactions on Magnetics, 8(3):511{516, 1972.
    [13] Michel Biron. 7 - plastics solutions for practical problems. In Michel Biron, editor, Thermoplastics and Thermoplastic Composites (Second Edition), Plastics Design Library, pages 831 { 984. William Andrew Publishing, second edition edition, 2013.
    [14] LH Lewis, CH Sellers, and V Panchanathan. Factors a ecting coercivity in rareearth based advanced permanent magnet materials. Technical report, Brookhaven National Lab., Upton, NY (United States), 1997.
    [15] John J Croat, Jan F Herbst, Robert W Lee, and Frederick E Pinkerton. Pr-fe
    and nd-fe-based materials: A new class of high-performance permanent magnets. Journal of Applied Physics, 55(6):2078{2082, 1984.
    [16] O Gut eisch and IR Harris. Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process. Journal of Physics D: Applied Physics, 29(9):2255, 1996.
    [17] L Schultz, Jo Wecker, and E Hellstern. Formation and properties of ndfeb prepared by mechanical alloying and solid-state reaction. Journal of applied physics, 61(8):3583{3585, 1987.
    [18] Satoshi Sugimoto. History and future of soft and hard magnetic materials. In Magnetic Material for Motor Drive Systems, pages 261{277. Springer, 2019.
    [19] Jan F Herbst, John J Croat, Frederick E Pinkerton, and WB Yelon. Relationships between crystal structure and magnetic properties in nd 2 fe 14 b. Physical Review B, 29(7):4176, 1984.
    [20] Fritz Thummler and Wolfgang Thomma. The sintering process. Metallurgical Reviews, 12(1):69{108, 1967.
    [21] Randall M German, Pavan Suri, and Seong Jin Park. liquid phase sintering. Journal of materials science, 44(1):1{39, 2009.
    [22] William D Kingery. Kinetics of high-temperature processes. MIT Press, 1959.
    [23] C Huber, C Abert, F Bruckner, M Groenefeld, O Muthsam, S Schuschnigg, K Sirak, R Thanho er, I Teliban, C Vogler, et al. 3d print of polymer bonded rare-earth magnets, and 3d magnetic eld scanning with an end-user 3d printer. Applied Physics Letters, 109(16):162401, 2016.
    [24] Aravind Mohanram, Sang-Ho Lee, Gary L Messing, and David J Green. Constrained sintering of low-temperature co- red ceramics. Journal of the American Ceramic Society, 89(6):1923{1929, 2006.
    [25] David J Green, Olivier Guillon, and Jurgen Rodel. Constrained sintering: A delicate balance of scales. Journal of the European Ceramic Society, 28(7):1451{ 1466, 2008.
    [26] IA Ovid'ko and AG Sheinerman. Micromechanisms for improved fracture toughness in nanoceramics. Rev. Adv. Mater. Sci, 29(2):105{125, 2011.
    [27] Khalil Abdelrazek Khalil. Advanced sintering of nano-ceramic materials. Ceramic Materials-Progress in Modern Ceramics, pages 65{82, 2012.
    [28] Rachman Chaim, M Levin, Amit Shlayer, and Claude Estourn es. Sintering and densi cation of nanocrystalline ceramic oxide powders: a review. Advances in Applied Ceramics, 107(3):159{169, 2008.
    [29] Jean-Pierre Gratier, Francois Renard, and Pierre Labaume. How pressure solution creep and fracturing processes interact in the upper crust to make it behave in both a brittle and viscous manner. Journal of Structural Geology, 21(8-9):1189{1197, 1999.
    [30] Jean-Pierre Gratier, Robert Guiguet, Fran cois Renard, Liliane Jenatton, and Dominique Bernard. A pressure solution creep law for quartz from indentation experiments. Journal of Geophysical Research: Solid Earth, 114(B3), 2009.
    [31] Jean-Pierre Gratier, Dag K Dysthe, and Fran cois Renard. The role of pressure solution creep in the ductility of the earth's upper crust. In Advances in Geophysics, volume 54, pages 47{179. Elsevier, 2013.
    [32] Ernest H Rutter. The in uence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics, 14(1):13{33, 1972.
    [33] Xiangmin Zhang, Christopher J Spiers, and Colin J Peach. Compaction creep of wet granular calcite by pressure solution at 28 c to 150 c. Journal of Geophysical Research: Solid Earth, 115(B9), 2010.
    [34] N Yamasaki, K Yanagisawa, M Nishioka, and S Kanahara. A hydrothermal hotpressing method: apparatus and application. Journal of materials science letters, 5(3):355{356, 1986.
    [35] Graziella Goglio, Arnaud Ndayishimiye, Alain Largeteau, and Catherine Elissalde. View point on hydrothermal sintering: Main features, today's recent advances and tomorrow's promises. Scripta Materialia, 158:146{152, 2019.
    [36] Jing Guo, Hanzheng Guo, Amanda L. Baker, Michael T. Lanagan, Elizabeth R. Kupp, Gary L. Messing, and Clive A. Randall. Cold sintering: A paradigm shift for processing and integration of ceramics. January 2016.
    [37] Hanzheng Guo, Amanda Baker, Jing Guo, and Clive A Randall. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 99(11):3489{3507, 2016.
    [38] K Byrappa and M Yoshimura. Handbook of hydrothermal technology, william andrew, 2013.
    [39] RUDOLF Emmerich and SASCHA Baumann. Microwaves support annealing. Kunststo e International, 103(2):11{13, 2013.
    [40] David Brown, Bao-Min Ma, and Zhongmin Chen. Developments in the processing and properties of ndfeb-type permanent magnets. Journal of magnetism and magnetic materials, 248(3):432{440, 2002.
    [41] Rustum Roy, Dinesh Agrawal, Jiping Cheng, and Shalva Gedevanishvili. Full sintering of powdered-metal bodies in a microwave eld. Nature, 399(6737):668{ 670, 1999.
    [42] BP Barnsley. Microwave processing of materials. Metals and materials (London), 5(11):633{636, 1989.
    [43] D Agrawal. Microwave sintering of metal powders. In Advances in powder metal-lurgy, pages 361{379. Elsevier, 2013.
    [44] WANG Renquan, LIU Ying, LI Jun, CHU Linhua, YANG Xiaojiao, and QIU Yuchong. E ect of crushing methods on morphology and magnetic properties of anisotropic ndfeb powders. Journal of Rare Earths, 35(8):800{804, 2017.
    [45] SZ Zhou, YX Zhou, and CD Graham Jr. X-ray determination of alignment in fendb magnets. Journal of applied physics, 63(8):3534{3536, 1988.
    [46] Riina Salmimies, Paula Vehmaanpera, and Antti Hakkinen. Acidic dissolution of magnetite in mixtures of oxalic and sulfuric acid. Hydrometallurgy, 163:91{98,2016.
    [47] RH Cornell and U Schwertmann. The iron-oxides. vch publ, 1996.
    [48] UTRM Schwertmann and Reginald M Taylor. Iron oxides. Minerals in soil envi-ronments, 1:379{438, 1989.
    [49] E Baumgartner, MA Blesa, H Marinovich, and AJG Maroto. Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions. Inorganic Chemistry, 22(16):2224{2226, 1983.
    [50] KH Jurgen Buschow. Concise encyclopedia of magnetic and superconducting ma- terials. Elsevier, 2005.
    [51] Janez Holc, S Beseni car, and Drago Kolar. A study of nd 2 fe 14 b and a neodymium-rich phase in sintered ndfeb magnets. Journal of materials science, 25(1):215{219, 1990.
    [52] NA El-Masry and HH Stadelmaier. Nanometer particles in the intergranular microstructure of fe-nd-b permanent magnets. Materials Letters, 3(9-10):405{408,1985.

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE