簡易檢索 / 詳目顯示

研究生: 呂文心
Lu, Wen-Hsin
論文名稱: 丙戊酸作用於受傷脊髓組織誘導神經保護之研究
Effect of valproic acid on neuroprotection in injured spinal cord tissue
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 75
中文關鍵詞: 脊髓損傷
外文關鍵詞: spinal cord injury, valproic acid
相關次數: 點閱:45下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓損傷會導致神經細胞死亡,並會在損傷中心引起嚴重的免疫反應,使得感覺與運動功能喪失。微膠質細胞是中樞神經系統的免疫細胞,負責清除細胞碎片並且在中樞神經系統受傷後扮演對組織重組有幫助性的角色。在活化之後,微膠質細胞在受傷的中樞神經系統中也參與了發炎反應的產生。丙戊酸(valproic acid; VPA)是組蛋白去乙醯酶的抑制物,也是一種臨床上常見的抗癲癇藥物。近來發現VPA 會經由調節膠細胞對發炎環境的反應而有神經保護功能以及抗發炎作用。在此篇研究中,我們利用離體實驗以及活體實驗探討VPA 在脊髓損傷後所扮演的角色。處理0.1 到1.0 mM濃度的VPA 並不會對由新生小鼠皮質組織所培養的初代微膠質細胞產生細胞毒性。然而0.5 與1.0 mM 濃度的VPA 會降低P2X4 與P2X7 受體mRNA 的表現。我們進一步發現,經由VPA 處理後的微膠質細胞,吞噬能力在處理P2X7 受體的增效劑BzATP後會有增加的現象。另外,經由活體實驗,我們發現連續三天注入VPA 能改善實驗老鼠在重度脊髓損傷後的後肢行動能力。GAP-43 的免疫螢光染色則是顯示處理VPA會在損傷的脊髓中增加表現GAP-43 的神經纖維。此外,我們觀察到在受傷的脊髓中,P2X4 與P2X7 受體mRNA 的表現會上升;然而,連續三天處理VPA 會在脊髓損傷後第十四天顯著地降低P2X4 與P2X7受體mRNA 的表現。既然受傷脊髓組織的組蛋白H3 乙醯化會在處理VPA 後增加,於是我們利用蛋白質體分析方式檢測脊髓組織在處理VPA 後的蛋白質表現。由結果得知,熱休克蛋白與抗氧化酶(過氧化氫酶與錳超氧化物歧化酶)在接受VPA 處理的受傷脊髓組織中表現量會增加。總而言之,我們推論VPA 可能透過抗發炎與抗氧化作用而在受傷的脊髓組織中有神經保護功能。此外,VPA 可能會經由降低P2X7 受體在受傷脊髓組織中的表現,進而促進微膠質細胞的吞噬作用並有效地移除組織碎片。此篇研究指出VPA 是一種有潛力的脊髓損傷治療劑。

    Spinal cord injury (SCI) results in the neural cell death and severe inflammation in the lesion center and subsequently causes the loss of sensation and locomotion. Microglia, the immune cells of the central nervous system (CNS), are responsible for the removal of cell debris and play a constructive role in tissue remodeling after the injury to the CNS. However, upon activation, these cells are also involved in the induction of inflammation in the injured CNS. Valproic acid (VPA) acts as a histone deacetylase (HDAC) inhibitor and a common anti-seizure drug clinically used for the treatment of bipolar disorder. This compound has recently been found to have europrotective and anti-inflammatory activity by the regulation of glial response to inflamed environment. In this study, in vitro and in vivo experiments were performed to investigate the role that VPA treatment plays after SCI. Treatment with VPA at the region of 0.1-1.0 mM caused no cytotoxicity in cultured microglia isolated from neonatal rat cortical tissues. However, VPA at 0.5 and 1.0 mM reduced the mRNA expressions of microglial P2X4R and P2X7R, two subtypes of P2X receptor which relates with microglial activation in the inflamed condition. Furthermore, we found that the phagocytotic activity of VPA-primed microglia was enhanced after exposure to the P2X7R agonist, BzATP. Through in vivo study, we reported here that the infusion of VPA for 3 days improved the hindlimb locomotion in the rats with severe SCI. Immunofluorescence staining for GAP-43 showed that VPA treatment increased GAP-43+ neuronal fibers in the injured spinal cord when compared to observed in the PBS-treated control group. Moreover, we found that P2X4R and P2X7R mRNA levels were upregulated in the injured spinal cord, whereas a 3-day infusion with VPA significantly reduced P2X4R and P2X7R mRNA levels at 14 day after SCI. Since the level of acetylated histone H3 were increased in VPA-treated spinal cord, the proteomic analysis was performed to examinethe profile of the differential protein expression in VPA-infused spinal cord tissue. Together with the observations by western blotting, we found that the expression levels of heat shock proteins and antioxidant enzymes (catalase and MnSOD) were upregulated in the injured spinal cord tissues receiving VPA. Collectively, we concluded that VPA has the neuroprotective role in the injured spinal cord tissues possibly through its anti-inflammatory and anti-oxidative activity. Moreover, VPA may enhance microglial phagocytosis to effectively remove tissue debris via the downregulation of P2X7R expression in the injured spinal cord. Our findings indicated that VPA may act as the potent therapeutic agent for treatment of SCI.

    中文摘要 ................................................1 Abstract ................................................2 Acknowledgement ................................................4 Content ................................................5 List of Tables ................................................8 List of Figures ................................................9 Abbreviations ................................................11 Background ................................................13 I. Introduction to VPA ................................................13 II. Function of microglia and P2 purinoceptors ................................................15 III. Overview of spinal cord structure and traumatic spinal cord injury ................................................17 IV. Purpose of the study ................................................18 Materials and Methods ................................................20 I. Primary microglia ................................................20 II. Cytotoxicity assay ................................................20 III. Cell viability assay ................................................21 IV. Polymerase Chain Reaction ................................................21 RNA isolation ................................................21 Reverse transcription ................................................21 Real-Time Quantitative Polymerase Chain Reaction (Q-PCR) ................................................22 V. Phagocytotic assay ................................................22 VI. Animal experiment ................................................23 VII. Spinal cord injury ................................................24 VIII. Hindlimb locomotion assay ................................................25 IX. Tissue immunohistochemistry ................................................25 X. Histone analysis ................................................26 XI. Western blot ................................................27 XII. Proteomic analysis ................................................27 Protein sample preparation ................................................27 Protein concentration assay ................................................28 2-DE sample preparation ................................................28 2-DE ................................................28 2-DE stain ................................................29 Quantitative analysis of proteins in 2-D SDS-PAGE ................................................30 Protein identification by mass spectrometer ................................................30 XIII. Statistical analysis ................................................31 Results ................................................33 I. Effect of VPA on microglial cytotoxicity ................................................33 II. Effect of VPA on P2X4R and P2X7R expressions in cultured microglia ................................................33 III. Effect of VPA on microglial phagocytotic activity ................................................34 IV. Effect of VPA on the hindlimb locomotion in rats with spinal cord injury ................................................34 V. P2X4R and P2X7R mRNA expressions in the injured spinal cord tissue ................................................35 VI. P2X4R and P2X7R mRNA expressions in the injured spinal cord tissue after VPA treatment ................................................36 VII. Proteomic profile of the injured spinal cord treated with VPA ................................................37 Discussion ................................................39 I. VPA and microglial activation ................................................39 II. Effect of VPA on P2X4R and P2X7R mRNA expressions in the injured spinal cord ................................................40 III. Proteomic profile in the injured spinal cord treated with VPA ................................................41 References ................................................45 Table 1. List of all proteins that were differentially expressed in the lesion center of the injured spinal cord after VPA treatment compared to those detected in the PBS group ................................................54 Table 2. List of all proteins that were identified in 2-DE gels shown in Fig. 11 by MALDI-TOF MS ................................................56 Figure 1. VPA treatment had no effect on cytotoxicity and cell viability in cultured primary microglia ................................................59 Figure 2. VPA altered P2X4R and P2X7R mRNA expressions in cultured primary microglia ................................................60 Figure 3. VPA treatment increased microglial phagocytotic activity after exposure to BzATP ................................................61 Figure 4. VPA treatment improved the hindlimb locomotion of rats with SCI ................................................62 Figure 5. VPA treatment had effect on neuron recovery after SCI ................................................63 Figure 6. The mRNA expression of P2X4R was upregulated after SCI ................................................64 Figure 7. The mRNA expression of P2X7R was upregulated after SCI ................................................65 Figure 8. VPA treatment altered P2X4R mRNA expression after SCI ................................................66 Figure 9. VPA treatment altered P2X7R mRNA expression after SCI ................................................67 Figure 10. VPA treatment increased the acetylation of histone H3 in the lesion center of the injured spinal cord ................................................68 Figure 11. VPA treatment altered the protein expressions in the lesion center of the injured spinal cord ................................................69 Figure 12. VPA treatment caused different presentations of protein functional grouping in the lesion center of the injured spinal cord ................................................70 Figure 13. Representative upregulated proteins in the lesion center of injured spinal cord after VPA treatment were shown ................................................72 Figure 14. Representative downregulated proteins in the lesion center of injured spinal cord after VPA treatment were shown ................................................73 Figure 15. Representative proteins were expressed in the lesion center of injured spinal cord after VPA treatment only ................................................74 Figure 16. VPA treatment increased the oxidative enzyme MnSOD and heat shock protein 60 in the injured spinal cord tissue ................................................75

    abd-el-Basset E, Fedoroff S (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res 41:222-237.
    Antoine JC, Honnorat J, Camdessanche JP, Magistris M, Absi L, Mosnier JF, Petiot P, Kopp N, Michel D (2001) Paraneoplastic anti-CV2 antibodies react with peripheral nerve and are associated with a mixed axonal and demyelinating peripheral neuropathy. Ann Neurol 49:214-221.
    Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26:555-563.
    Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13:343-359.
    Bernardino L, Balosso S, Ravizza T, Marchi N, Ku G, Randle JC, Malva JO, Vezzani A (2008) Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X7 receptor-mediated IL-1beta release. J Neurochem 106:271-280.
    Biton V, Mirza W, Montouris G, Vuong A, Hammer AE, Barrett PS (2001) Weight change associated with valproate and lamotrigine monotherapy in patients with epilepsy. Neurology 56:172-177.
    Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267-2276.
    Breum L, Astrup A, Gram L, Andersen T, Stokholm KH, Christensen NJ, Werdelin L, Madsen J (1992) Metabolic changes during treatment with valproate in humans: implication for untoward weight gain. Metabolism 41:666-670.
    Brough D, Le Feuvre RA, Iwakura Y, Rothwell NJ (2002) Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol Cell Neurosci 19:272-280.
    Butterfield LH, Merino A, Golub SH, Shau H (1999) From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal 1:385-402.
    Carmel JB, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart RP (2001) Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 7:201-213.
    Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22:3061-3069.
    Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM, Hong JS (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116-1125.
    Chen WH, Tzeng SF (2005) Pituitary adenylate cyclase-activating polypeptide prevents cell death in the spinal cord with traumatic injury. Neurosci Lett 384:117-121.
    Cheng H, Wu JP, Tzeng SF (2002) Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res 69:397-405.
    Chengappa KN, Chalasani L, Brar JS, Parepally H, Houck P, Levine J (2002) Changes in body weight and body mass index among psychiatric patients receiving lithium, valproate, or topiramate: an open-label, nonrandomized chart review. Clin Ther 24:1576-1584.
    Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277-1283.
    Cuadros MA, Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56:173-189.
    Cutrer FM (2001) Antiepileptic drugs: how they work in headache. Headache 41 Suppl 1:S3-10.
    Cutrer FM, Moskowitz MA (1996) Wolff Award 1996. The actions of valproate and neurosteroids in a model of trigeminal pain. Headache 36:579-585.
    Czuczwar SJ, Frey HH, Loscher W (1985) Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 108:273-280.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752-758.
    Davis R, Peters DH, McTavish D (1994) Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 47:332-372.
    Demir E, Aysun S (2000) Weight gain associated with valproate in childhood. Pediatr Neurol 22:361-364.
    Deumens R, Koopmans GC, Joosten EA (2005) Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 77:57-89.
    Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5:191-199.
    Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA, Menander KB (1987) Valproic acid hepatic fatalities: a retrospective review. Neurology 37:379-385.
    Du J, Creson TK, Wu LJ, Ren M, Gray NA, Falke C, Wei Y, Wang Y, Blumenthal R, Machado-Vieira R, Yuan P, Chen G, Zhuo M, Manji HK (2008) The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci 28:68-79.
    Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508-2521.
    Fang KM, Lu WH, Sun SH, Tzeng SF (2008) Regulation of microglial phagocytosis by P2X7 purinoceptor. In: Neuroscience 2008, the 38th annual meeting of the Society for Neuroscience. U.S.A. Abstract 647.22.
    Gaillard WD, Zeffiro T, Fazilat S, DeCarli C, Theodore WH (1996) Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia 37:515-521.
    Gean PW, Huang CC, Hung CR, Tsai JJ (1994) Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 33:333-336.
    Ghose K, Niven B (1998) Prophylactic sodium valproate therapy in patients with drug-resistant migraine. Methods Find Exp Clin Pharmacol 20:353-359.
    Gobbi G, Janiri L (2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl) 185:255-262.
    Godin Y, Heiner L, Mark J, Mandel P (1969) Effects of DI-n-propylacetate, and anticonvulsive compound, on GABA metabolism. J Neurochem 16:869-873.
    Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J 20:6969-6978.
    Gram L, Flachs H, Wurtz-Jorgensen A, Parnas J, Andersen B (1979) Sodium valproate, serum level and clinical effect in epilepsy: a controlled study. Epilepsia 20:303-311.
    Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168:273-282.
    Hattori F, Oikawa S (2007) Peroxiredoxins in the central nervous system. Subcell Biochem 44:357-374.
    Henriksen O, Johannessen SI (1982) Clinical and pharmacokinetic observations on sodium valproate - a 5-year follow-up study in 100 children with epilepsy. Acta Neurol Scand 65:504-523.
    Horky LL, Galimi F, Gage FH, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498:525-538.
    Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S (2000) Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res 857:246-251.
    Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210-226.
    Inoue K, Tsuda M, Koizumi S (2005) ATP receptors in pain sensation: Involvement of spinal microglia and P2X(4) receptors. Purinergic Signal 1:95-100.
    Jiang SX, Kappler J, Zurakowski B, Desbois A, Aylsworth A, Hou ST (2007) Calpain cleavage of collapsin response mediator proteins in ischemic mouse brain. Eur J Neurosci 26:801-809.
    Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103-110.
    Johannessen CU, Johannessen SI (2003) Valproate: past, present, and future. CNS Drug Rev 9:199-216.
    Johannessen CU, Petersen D, Fonnum F, Hassel B (2001) The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Res 47:247-256.
    Jones TB, McDaniel EE, Popovich PG (2005) Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 11:1223-1236.
    Jutras I, Desjardins M (2005) Phagocytosis: at the crossroads of innate and adaptive immunity. Annu Rev Cell Dev Biol 21:511-527.
    Keck PE, Jr., McElroy SL, Tugrul KC, Bennett JA (1993) Valproate oral loading in the treatment of acute mania. J Clin Psychiatry 54:305-308.
    Khakh BS, Bao XR, Labarca C, Lester HA (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2:322-330.
    Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G (2003) Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967:152-160.
    Kusumakar V, Yatham LN, Haslam DR, Parikh SV, Matte R, Silverstone PH, Sharma V (1997) Treatment of mania, mixed state, and rapid cycling. Can J Psychiatry 42 Suppl 2:79S-86S.
    Leiderman DB, Balish M, Bromfield EB, Theodore WH (1991) Effect of valproate on human cerebral glucose metabolism. Epilepsia 32:417-422.
    Li R, El-Mallahk RS (2000) A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency. Neurosci Lett 294:147-150.
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631-677.
    Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1-7.
    Liu XJ, Salter MW (2005) Purines and pain mechanisms: recent developments. Curr Opin Investig Drugs 6:65-75.
    Luder AS, Parks JK, Frerman F, Parker WD, Jr. (1990) Inactivation of beef brain alpha-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. Possible mechanism of anticonvulsant and toxic actions. J Clin Invest 86:1574-1581.
    Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521-532.
    Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1-15.
    Mathew NT (2001) Antiepileptic drugs in migraine prevention. Headache 41 Suppl 1:S18-24.
    McElroy SL, Keck PE, Jr., Tugrul KC, Bennett JA (1993) Valproate as a loading treatment in acute mania. Neuropsychobiology 27:146-149.
    McLean MJ, Macdonald RL (1986) Sodium valproate, but not ethosuximide, produces useand voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 237:1001-1011.
    Meller ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GF (1994) The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33:1471-1478.
    Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) [Pharmacodynamic properties of N-dipropylacetic acid.]. Therapie 18:435-438.
    Mingam R, De Smedt V, Amedee T, Bluthe RM, Kelley KW, Dantzer R, Laye S (2008) In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1 beta in the murine brain. Brain Behav Immun 22:234-244.
    Mitsikostas DD, Polychronidis I (1997) Valproate versus flunarizine in migraine prophylaxis: a randomized, double-open, clinical trial. Funct Neurol 12:267-276.
    Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29:3781-3791.
    Mora A, Gonzalez-Polo RA, Fuentes JM, Soler G, Centeno F (1999) Different mechanisms of protection against apoptosis by valproate and Li+. Eur J Biochem 266:886-891.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63.
    Nicholson BD (2004) Evaluation and treatment of central pain syndromes. Neurology 62:S30-36.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013-1067.
    Onofrj M, Thomas A, Paci C (1998) Reversible parkinsonism induced by prolonged treatment with valproate. J Neurol 245:794-796.
    Pan JZ, Ni L, Sodhi A, Aguanno A, Young W, Hart RP (2002) Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. J Neurosci Res 68:315-322.
    Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320:1002-1012.
    Paron I, D'Elia A, D'Ambrosio C, Scaloni A, D'Aurizio F, Prescott A, Damante G, Tell G (2004) A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem J 378:929-937.
    Peng GS, Li G, Tzeng NS, Chen PS, Chuang DM, Hsu YD, Yang S, Hong JS (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 134:162-169.
    Perucca E (2002) Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16:695-714.
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734-36741.
    Radatz M, Ehlers K, Yagen B, Bialer M, Nau H (1998) Valnoctamide, valpromide and valnoctic acid are much less teratogenic in mice than valproic acid. Epilepsy Res 30:41-48.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413-492.
    Reddy SJ, La Marca F, Park P (2008) The role of heat shock proteins in spinal cord injury. Neurosurg Focus 25:E4.
    Ricard D, Rogemond V, Charrier E, Aguera M, Bagnard D, Belin MF, Thomasset N, Honnorat J (2001) Isolation and expression pattern of human Unc-33-like phosphoprotein 6/collapsin response mediator protein 5 (Ulip6/CRMP5): coexistence with Ulip2/CRMP2 in Sema3a- sensitive oligodendrocytes. J Neurosci 21:7203-7214.
    Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J, Tytell M, Milligan CE (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735-9745.
    Salter MW, De Koninck Y, Henry JL (1993) Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol 41:125-156.
    Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, Maeda H, Satoh K (2001) Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology 57:445-449.
    Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361-1368.
    Silberstein SD (1996) Divalproex sodium in headache: literature review and clinical guidelines. Headache 36:547-555.
    Song G, Cechvala C, Resnick DK, Dempsey RJ, Rao VL (2001) GeneChip analysis after acute spinal cord injury in rat. J Neurochem 79:804-815.
    Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45:667-678.
    Strittmatter SM (1992) GAP-43 as a modulator of G protein transduction in the growth cone. Perspect Dev Neurobiol 1:13-19.
    Strittmatter SM, Vartanian T, Fishman MC (1992) GAP-43 as a plasticity protein in neuronal form and repair. J Neurobiol 23:507-520.
    Suter MR, Wen YR, Decosterd I, Ji RR (2007) Do glial cells control pain? Neuron Glia Biol 3:255-268.
    Tai MH, Cheng H, Wu JP, Liu YL, Lin PR, Kuo JS, Tseng CJ, Tzeng SF (2003) Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Exp Neurol 183:508-515.
    Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15-26.
    Trang T, Beggs S, Salter MW (2006) Purinoceptors in microglia and neuropathic pain. Pflugers Arch 452:645-652.
    Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 28:101-107.
    Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K (2009) IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A 106:8032-8037.
    Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778-783.
    Tytell M (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia 21:445-455.
    Tzeng SF, Lee JL, Kuo JS, Yang CS, Murugan P, Ai Tai L, Chu Hwang K (2002) Effects of malonate C60 derivatives on activated microglia. Brain Res 940:61-68.
    van der Laan JW, de Boer T, Bruinvels J (1979) Di-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J Neurochem 32:1769-1780.
    Verrotti A, Basciani F, Morresi S, de Martino M, Morgese G, Chiarelli F (1999) Serum leptin changes in epileptic patients who gain weight after therapy with valproic acid. Neurology 53:230-232.
    Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H (1993) Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 13:4403-4411.
    Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821-827.
    Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS (2008) Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 29:4546-4553.
    Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450-455.
    Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32-40.
    Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y, Taniguchi T (2008) Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull 31:1121-1130.
    Zeise ML, Kasparow S, Zieglgansberger W (1991) Valproate suppresses N-methyl-D-aspartate-evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 544:345-348.
    Zhang SX, Underwood M, Landfield A, Huang FF, Gison S, Geddes JW (2000) Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol 59:287-296.

    下載圖示 校內:2014-08-05公開
    校外:2014-08-05公開
    QR CODE