簡易檢索 / 詳目顯示

研究生: 林寘堯
Lin, Jyh-Yao
論文名稱: 撓性連桿含裂縫之曲柄滑塊機構的動態分析
Dynamic Analysis of Slider-Crank Mechanism with a Crack in the Flexible Linkage
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 47
中文關鍵詞: 曲柄滑塊機構撓性連桿裂縫
外文關鍵詞: crack, silder-crank mechanism
相關次數: 點閱:52下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文利用有限元素法研究撓性連桿含裂縫之曲柄滑塊機構的動態響應。假設機構中的曲柄為剛體及連桿為Timoshenko樑,而連桿上的裂縫考慮為完全開啟的狀態,並利用裂縫之應力強度因子及卡氏定理求得連桿在裂縫處之柔度矩陣。本文利用Hamilton原理推導出系統的運動方程式,然後以Runge-Kutta數值積分方法求得連桿中點及滑塊與連桿交接處之軸向變形 、橫向變形 以及轉角 的暫態響應,並探討連桿有裂縫時對系統動態響應的影響。本文的結果與文獻作比較,兩者差異很小,可知本研究的結果擁有相當高的準確性。此外,數值結果顯示連桿有裂縫時,連桿中點及連桿和滑塊交接處之暫態振幅會比無裂縫時之振幅大。

     In this thesis, the dynamic behavior of slider-crank mechanism with a crack in the flexible linkage is studied. The crank of the system is assumed to be rigid and the flexible linkage is modeled as a Timoshenko beam. The crack in the flexible linkage is modeled as a transverse open crack whose local flexibilities are calculated by using a fracture mechanics approach and the Castigliano’s theorem. The finite element method and Hamiltion’s principle are employed to derive the equations of motion of the system. Dynamic responses are obtained by using the Runge-Kutta method. Influences on dynamic response of the system due to different depths and locations of the crack on flexible linkage are investigated.

    目錄 摘要……………………………………………………………………………i 英文摘要…………………………………………………………………… ii 誌謝………………………………………………………………………… iii 圖目錄……………………………………………………………………… vi 第一章 緒論…………………………………………………………………1 1-1 研究動機………………………………………………………………1 1-2 文獻回顧………………………………………………………………2 1-3 本文研究………………………………………………………………5 第二章 系統運動方程式……………………………………………………7 2-1 分析的物理模式與基本假設………………………………………7 2-2 連桿的位移場與機械能式…………………………………………7 2-3 形狀函數之選取……………………………………………………10 2-4 Hamilton原理………………………………………………………15 2-5 束縛條件……………………………………………………………15 2-6 含裂縫之連桿元素的勁度矩陣……………………………………16 第三章 數值結果與討論……………………………………………………20 3-1 收斂性分析…………………………………………………………20 3-2 裂縫對系統響應的影響……………………………………………21 3-3 連桿軸向變形的影響………………………………………………22 3-4 連桿軸向變形和滑塊滑動邊界條件的影響………………………23 第四章 結論…………………………………………………………………24 參考文獻…………………………………………………………………… 25 附錄A……………………………………………………………………… 29 附錄B……………………………………………………………………… 33 附錄C……………………………………………………………………… 34 自述 ……………………………………………………………………… 47

    [1] Bahgat, B. M. and Willmert, K. D., 1974, “Finite Element Vibrational Analysis of Planer Mechanisms,” Mechanism and Machine Theory, Vol. 11, pp. 47-71.
    [2] Haug, E. S. and McCullough, M. K., 1986, “A Variational-Vector Calculus Approach to Machine Dynamics,” Transactions on ASME, Vol. 108, No. 3, pp. 25-30.
    [3] Zadoks, R. B. and Midha, A., 1987, “Parametric Stability of a Two-Degree-of-Freedom Machine System: Part I-Equation of Motion and Stability,” ASME Journal of Mechanical Design, Vol. 109, pp. 211-223.
    [4] Dado, M. and Soni, A. H., 1987, “Complete Dynamic Analysis of Elastic Linkages,” ASME Journal of Mechanical Design, Vol. 109, pp. 481-486.
    [5] Denman H. H., 1991, “Exact Solution for the Rigid Slider-Crank Mechanism with Gas Pressure,” Mechanism and Machine Theory, Vol. 26, No. 4, pp. 415-420.
    [6] Beale, B. G. and Scott, R. A., 1990, “ The Stability and Response of a
    Flexible Rod in Quick Return Mechanism,” Journal of Sound and Vibration,
    Vol. 141, No. 2, pp. 279-285.
    [7] Yang, Z. and Sadler, J. P., 1990, “Large-Displacement Finite Element Analysis of Flexible Linkages,” ASME Journal of Mechanical Design, Vol. 112, pp. 175-182.
    [8] Liou, F. W. and Erdman, A. G., 1991, “Dynamic Analysis of a Motor- Gear Mechanism System,” Mechanism and Machine Theory, Vol. 26, No. 3, pp. 239-252.
    [9] Fung, R. F., 1996, “Dynamic Analysis of the Flexible Connecting Rod of Slider-Crank Mechanism,” ASME Journal of Vibration and Acoustics, Vol. 118, No. 4, pp. 687-689.
    [10] Fung, R. F. and Lee, F. Y., 1997, “Dynamic Analysis of the Flexible Connecting Rod of a Quick-Return Mechanism with Time-Dependent Coefficients by the Finite Element Method,” Journal of Sound and Vibration, Vol. 202, No. 2, pp. 187-201.
    [11] Liebowitz, H., Vanderveldt, H. and Harris, D. W., 1967, “Carrying Capacity of Notched Column,” International Journal of Solids and Structures, Vol. 3, pp. 489-500.
    [12] Rajab, M. D. and Al-Sabeeh, A., 1991, “Vibrational Characteristics of Cracked Shafts,” Journal of Sound and Vibration, Vol. 147, pp. 465-473.
    [13] Kikids, M. L. and Papadopoulos, C. A., 1992, “Slenderness Ratio Effect
    on Cracked Beam,” Journal of Sound and Vibration, Vol. 155, pp. 1-11.
    [14] Huang, S. C., Huang, Y. M. and Shieh, S. M., 1993, “Vibration and
    Stability of a Rotating Shaft Containing a Transverse Crack,” Journal of
    Sound and Vibration, Vol. 162, pp. 387-401.
    [15] Grabowski, B., 1980, “The Vibrational Behavior of a Turbine Rotor
    Containing a Transverse Crack,” ASME Journal of Mechanical Design, Vol.
    102, pp. 140-146.
    [16] Dimarogonas, A. D. and Paipetis, S. A., 1983, Analytical Methods in Rotor Dynamics, Applied Science Publishers, London and New York.
    [17] Papadopoulos, C. A. and Dimarogonas, A. D., 1987, “Coupling of
    Bending and Torsional Vibration of a Cracked Timoshenko Shaft,” Ingenieur
    Archive, Vol. 57, pp. 495-505.
    [18] Papadopoulos, C. A. and Dimarogonas A. D., 1988, “Stability of
    Cracked Rotors in the Coupled Vibration Mode,” ASME Journal of Vibration,
    Acoustics, Stress and Reliabilty in Design, Vol. 110, pp. 356-359.
    [19] Leung, P. S., 1992, “The Effects of a Transverse Crack on the Dynamics
    of a Circular Shaft,” Proceedings of the International Conference on Rotating
    Machine Dynamics, Venice, Italy, pp. 59-67.
    [20] Hwang, J. R. and Choi, S. T., 1999, “Dynamic Analysis of a Geared
    Rotor-Bearing System with an Open Crack,” Journal of the Chinese Society
    of Mechanical Engineers, Vol. 20, No. 5, pp. 425-435.
    [21] Sekhar, A. S. and Jayant, K. D., 2000, “Effects of Cracks on Rotor
    System Instability,” Mechanism and Machine Theory, Vol. 35, pp. 16-57.
    [22] Huang, C. J. and Jou, B. H., 2002, “Vibration and Stability of a Geared
    Rotor System with an Open Crack,” Journal of Air Force Institute of
    Technology, Issue 1, Vol. 1, pp. 73-87.
    [23] Tada, H., Paris, P. and Irwin, G., 1985, The Stress Analysis of Cracks
    Handbooks, Hellertown, Pensylvania: Del research Corp.

    下載圖示 校內:立即公開
    校外:2005-08-30公開
    QR CODE