簡易檢索 / 詳目顯示

研究生: 田武釗
Tian, Wu-Zhao
論文名稱: 運用類神經網路於分子模擬自由能計算之進階採樣演算法開發
Algorithm Development of Artificial Neural Network Enhanced Sampling for Free Energy Calculation in Molecular Dynamics Simulations
指導教授: 邱繼正
Chiu, Chi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 124
中文關鍵詞: 類神經網路自由能計算分子動力學
外文關鍵詞: Artificial Neural Network, Free Energy Calculation, Molecular Dynamics
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自由能計算為分子動力學模擬一大重要且熱門的研究主題。倘若目標系統的自
    由能分布能被良好的定義與計算,其對應的熱力學性質就能被精準的求出,從而促
    進於該系統的應用。然而,若目標系統存在高自由能障,分子動力學所依據的遍歷
    假說,將會失效。此時,採樣將不完全,所計算的熱力學參數便失去精確性,最終
    模擬將無法得到收斂的自由能。為解決採樣不足的問題,進階採樣演算法相關研究,無論是基於機率分佈, 或者是力分佈, 如熱力學積分法 (Kirkwood 1935), 自由能微擾法(Zwanzig 1954), 傘型採樣 (Torrie and Valleau 1977), metadynamics (A Laio 2002), 以及 adaptive biasing force (Darve 2002) 等於過去數十年間,逐一提出。然而對複雜系統,進階採樣法還是存在採樣效率以及收斂性的問題,特別是系統邊界或高能障區域。
    在本研究之中,我們利用機器學習中的類神經網路 (artificial neural network, ANN), 改善傳統進階採樣法的取樣效率與收斂性。結果顯示,搭配 ANN 的進階採樣方法, 如 adaptive biasing force (ABF), adaptive umbrella sampling (AUS) method (Mezei 1987,Bartels 1997), 統計溫度分子動力學法 (STMD, Kim 2006) 及 COLVARS 模組中 (Fiorin
    2013) 的 ABF 功能,可更快、更準確的收斂到真實的自由能分佈。其中,在一維
    及二維簡易模型計算中,ABF 的收斂性比 AUS 更好。另外,標竿測試部分,利用
    STMD 及 COLVARS 模組計算真實液體系統,也如預期有良好表現。本研究開發的 ANN 進階取樣法的優點為: (1) 無須預知系統的自由能部分分布資訊;(2) 提供平滑且連續的自由能分布預測,甚至是當前尚未採樣到的區域;(3) 加入 ANN 訓練準則,從而降低誤差,提高採樣品質,進而提升 ANN 之預測精確度與效率;(4) 無須預先累積 ANN 訓練集或者預設目標函數 (如機率分佈),特別適合動力學特性較差的系統;(5) 能與現有分子動力學軟體做結合。基於上述優點,運用 ANN 輔佐進階取樣法能提供高效、高精確度以及低數值誤差的計算結果,自由能分布能被快速計算求出,預期可促進相關研究領域的發展。
    關鍵字: 類神經網路,自由能計算,分子動力學

    Free energy calculation has been an important field of molecular dynamics (MD). With the accurate free energy profile, the associated thermodynamic properties of the system can be fully identified, which allows better utilization of the materials to the real-world application.
    However, it is difficult for the conventional MD algorithm to achieve full and ideal sampling, i.e., satisfying ergodic hypothesis, due to the existing high energy barriers in the system. Consequently, the simulation fails to obtain a converged free energy landscape. Hence,
    various enhanced sampling methods of either histogram or force-based methods have been proposed to improve the sampling efficiency, such as thermodynamics integration (Kirkwood 1935), free energy perturbation (Zwanzig 1954), umbrella sampling (Torrie and Valleau 1977), metadynamics (A Laio 2002), and adaptive biasing force (ABF) (Darve 2002)etc. However, such enhanced sampling method might still suffer from insufficient sampling efficiency, slower convergence rate, and numerical error near system boundaries or high energy states. In this work, we adopt artificial neural network (ANN), a subset of machine
    learning (ML), to further improve the conventional algorithms, including ABF, adaptive umbrella sampling (AUS, Mezei 1987, Bartels 1997), statistical temperature molecular dynamics (STMD, Kim 2006), and ABF in the COLVARS (Fiorin 2013). The results show that the ANN enhanced free energy methods are able to converge to their correct free energy landscape much faster than the original free energy algorithms. For the calculation of ABF and AUS on 1D and 2D toy model systems, ABF has better convergence rate than AUS. For the benchmark, STMD and ABF in COLVARS module coupled with ANN again shows better performance compared with the conventional method without the support of ANN. The advantages of our ANN framework include: (1) the a priori knowledge to the system free energy profile is not required; (2) smooth, unwrinkled, and continuous free energy estimates,even for the unsampled regions, is offered; (3) training criteria is set for lower error and high sampling quality, which offers better estimate; (4) the pre-trained data is not essential since it is accumulated during simulation, and pre-assumed target function (e.g. probability distribution) is not required as well. These are benefits for the calculation of the slow dynamics systems; (5) the ability to link with the common MD software. With the aforementioned advantages, our ANN-based framework can obtain a converged free energy profile of the system with better efficiency, higher accuracy, lower numerical error. With conventional MD algorithms coupled with the ANN framework, our work ultimately helps facilitate the research progress of the related fields.
    Keywords:Artificial Neural Network, Free Energy Calculation, Molecular Dynamics

    摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Symbols xiii 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Molecular Simulation and Statistical Mechanics . . . . . . . . . . . . . . . 1 1.1.1 Molecular Simlulation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Fundamental Statistical Mechanics for Molecular Simulation . . . . 3 1.1.3 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.4 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Free Energy Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 General Concept of Free Energy . . . . . . . . . . . . . . . . . . . 9 1.2.2 Alchemical Method 12 1.2.3 Geometrical Method 13 1.3 Artificial Intelligence 18 1.3.1 Brief History of Artificial Intelligence 18 1.3.2 Hierarchy of AI 20 1.3.3 Concepts of Machine Learning 21 1.3.4 Supervised Learning and Unsupervised Learning 21 1.3.5 Artificial Neural Network 23 1.4 Artificial Intelligence in Molecular Simulation 26 1.5 Project Objective 28 2 METHODOLOGY 29 2.1 System of Interests 29 2.1.1 One-Dimensional System 29 2.1.2 Two-Dimensional System 30 2.1.3 Lennard Jones Liquid System 32 2.2 Simulatoin Details 34 2.2.1 One-Dimensional System (Toy System) 34 2.2.2 Two-Dimensional System (Toy System) 35 2.2.3 Lennard-Jones System (Realistic System) 36 2.2.4 Artificial Neural Network Module 37 2.2.5 Data preparation of Artificial Neural Network 37 2.2.6 Artificial Neural Network Architecture 37 2.2.7 Error Analysis 38 2.2.8 Sampling, Convergence, and ANN Training Criteria 39 2.3 Adaptive Biasing Force (ABF) 42 2.3.1 Regular ABF 42 2.3.2 ANN-ABF 45 2.4 Adaptive Umbrella Sampling (AUS) 48 2.4.1 Regular AUS 48 2.4.2 ANN-AUS 50 2.5 Statistical Temperature Molecular Dynamics (STMD) 53 2.5.1 Regular STMD 53 2.5.2 ANN-STMD 57 2.6 Collective Variable Module (Colvars) from LAMMPS 60 2.6.1 Colvars Module 60 2.6.2 ANN-Colvars 60 3 RESULTS AND DISCUSSION 64 3.1 Adaptive Biasing Force (ABF) 64 3.1.1 1D ABF 64 3.1.2 2D ABF 69 3.2 Adaptive Umbrella Sampling (AUS) 75 3.2.1 1D AUS 75 3.2.2 2D AUS 78 3.3 Comparison of ABF and AUS 81 3.4 Statistical Temperature Molecular Dynamics (STMD) 82 3.5 Colvars 86 3.6 ANN Parameters Selection 91 3.6.1 Activation Function 91 3.6.2 ANN Architecture 93 3.6.3 Role of ANN on Enhanced Sampling 95 4 CONCLUSION 97 REFERENCES 100

    [1] F. Noé, Beating the millisecond barrier in molecular dynamics simulations, Biophysical journal 108 (2)
    (2015) 228–229. doi:10.1016/j.bpj.2014.11.3477.
    [2] N. I. o. H. Steinbach, Center for Molecular Modelling, The empirical potential energy function.
    [3] W. K. Hastings, Monte carlo sampling methods using markov chains and their applications, Biometrika
    57 (1) (1970) 97–109. doi:10.2307/2334940.
    [4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calcu-
    lations by fast computing machines, The Journal of Chemical Physics 21 (6) (1953) 1087–1092. doi:
    10.1063/1.1699114.
    [5] G. Fiorin, M. L. Klein, J. Hénin, Using collective variables to drive molecular dynamics simulations,
    Molecular Physics 111 (22-23) (2013) 3345–3362. doi:10.1080/00268976.2013.813594.
    [6] M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli,
    F. Pietrucci, R. A. Broglia, M. Parrinello, Plumed: A portable plugin for free-energy calculations with
    molecular dynamics, Computer Physics Communications, Volume 180, Issue 10, p. 1961-1972. 180
    (2009) 1961–1972. doi:10.1016/j.cpc.2009.05.011.
    [7] R. W. Zwanzig, High-temperature equation of state by a perturbation method. i. nonpolar gases, The
    Journal of Chemical Physics 22 (8) (1954) 1420–1426. doi:10.1063/1.1740409.
    [8] J. G. Kirkwood, Statistical mechanics of fluid mixtures, The Journal of Chemical Physics 3 (5) (1935)
    300–313. doi:10.1063/1.1749657.
    [9] G. M. Torrie, J. P. Valleau, Nonphysical sampling distributions in monte carlo free-energy estima-
    tion: Umbrella sampling, Journal of Computational Physics 23 (2) (1977) 187–199. doi:https://doi.org/
    10.1016/0021-9991(77)90121-8.
    [10] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, The weighted histogram analysis
    method for free-energy calculations on biomolecules. i. the method, Journal of Computational Chemistry
    13 (8) (1992) 1011–1021. doi:10.1002/jcc.540130812.
    [11] M. Mezei, Adaptive umbrella sampling: Self-consistent determination of the non-boltzmann bias, Journal
    of Computational Physics 68 (1) (1987) 237 – 248. doi:https://doi.org/10.1016/0021-9991(87)90054-4.
    [12] C. Bartels, M. Karplus, Multidimensional adaptive umbrella sampling: Applications to main chain and
    side chain peptide conformations, Journal of Computational Chemistry 18 (12) (1997) 1450–1462. doi:
    10.1002/(SICI)1096-987X(199709)18:12<1450::AID-JCC3>3.0.CO;2-I.
    [13] F. Wang, D. P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states,
    Physical Review Letters 86 (10) (2001) 2050–2053. doi:10.1103/PhysRevLett.86.2050.
    [14] K. Hukushima, K. Nemoto, Exchange Monte Carlo Method and Application to Spin Glass Simulations,
    Journal of the Physical Society of Japan 65 (6) (1996) 1604. arXiv:cond-mat/9512035, doi:10.1143/JPSJ.
    65.1604.
    [15] M. Falcioni, M. W. Deem, A biased monte carlo scheme for zeolite structure solution, The Journal of
    Chemical Physics 110 (3) (1999) 1754–1766. doi:10.1063/1.477812.
    [16] D. J. Earl, M. W. Deem, Parallel tempering: Theory, applications, and new perspectives, Physical Chem-
    istry Chemical Physics 7 (23) (2005) 3910–3916. doi:10.1039/B509983H.
    [17] R. H. Swendsen, J.-S. Wang, Replica monte carlo simulation of spin-glasses, Physical Review Letters
    57 (21) (1986) 2607–2609. doi:10.1103/PhysRevLett.57.2607.
    [18] A. Laio, M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences
    99 (20) (2002) 12562. doi:10.1073/pnas.202427399.
    [19] J. Kim, J. E. Straub, T. Keyes, Statistical-temperature monte carlo and molecular dynamics algorithms,
    Physical Review Letters 97 (5) (2006) 050601. doi:10.1103/PhysRevLett.97.050601.
    [20] J. Kim, J. E. Straub, T. Keyes, Statistical temperature molecular dynamics: Application to coarse-
    grained β-barrel-forming protein models, The Journal of Chemical Physics 126 (13) (2007) 135101. doi:
    10.1063/1.2711812.
    [21] J. S. Lintuvuori, M. R. Wilson, Statistical temperature molecular dynamics simulations applied to phase
    transitions in liquid crystalline systems, The Journal of Chemical Physics 132 (22) (2010) 224902. doi:
    10.1063/1.3429620.
    [22] M. Sprik, G. Ciccotti, Free energy from constrained molecular dynamics, The Journal of Chemical Physics
    109 (18) (1998) 7737–7744. doi:10.1063/1.477419.
    [23] E. Darve, A. Pohorille, Calculating free energies using average force, The Journal of Chemical Physics
    115 (20) (2001) 9169–9183. doi:10.1063/1.1410978.
    [24] J. Hénin, C. Chipot, Overcoming free energy barriers using unconstrained molecular dynamics simula-
    tions, The Journal of Chemical Physics 121 (7) (2004) 2904–2914. doi:10.1063/1.1773132.
    [25] E. Darve, D. Rodríguez-Gómez, A. Pohorille, Adaptive biasing force method for scalar and vector free
    energy calculations, The Journal of Chemical Physics 128 (14) (2008) 144120. doi:10.1063/1.2829861.
    [26] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of
    mathematical biophysics 5 (4) (1943) 115–133. doi:10.1007/BF02478259.
    [27] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain,
    Psychological Review 65 (6) (1958) 386–408. doi:10.1037/h0042519.
    [28] F. Rosenblatt, Principles of Neurodynamics, Spartan Book, 1962. doi:citeulike-article-id:507136.
    [29] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors,
    Nature 323 (1986) 533. doi:10.1038/323533a0.
    [30] G. S. Georgiou, P. Christodoulides, S. A. Kalogirou, Implementing artificial neural networks in energy
    building applications —a review, in: 2018 IEEE International Energy Conference (ENERGYCON), 2018,
    pp. 1–6. doi:10.1109/ENERGYCON.2018.8398847.
    [31] N. Michael Copeland, Hierarchy of artificial intelligence.
    [32] G. H. Krizhevsky A., I. Sutskever, Imagenet classification with deep convolutional neural networks, Pro-
    ceedings of the 25th International Conference on Neural Information Processing Systems 1 (2012) 1097–
    1105.
    [33] B. Ding, H. Qian, J. Zhou, Activation functions and their characteristics in deep neural networks, in:
    2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 1836–1841. doi:10.1109/CCDC.
    2018.8407425.
    [34] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation functions: Comparison of trends in prac-
    tice and research for deep learning, eprint arXiv:1811.03378 (2018) arXiv:1811.03378.
    [35] N. Qian, On the momentum term in gradient descent learning algorithms, Neural Netw. 12 (1) (1999)
    145–151. doi:10.1016/s0893-6080(98)00116-6.
    [36] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimiza-
    tion, J. Mach. Learn. Res. 12 (2011) 2121–2159.
    [37] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, eprint arXiv:1412.6980 (2014) arXiv:
    1412.6980.
    [38] M. D. Zeiler, Adadelta: An adaptive learning rate method, eprint arXiv: 1212.5701 (2012) arXiv:
    1212.5701.
    [39] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436. doi:10.1038/nature14539.
    [40] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, K.-R. Müller, Machine learning
    of accurate energy-conserving molecular force fields, Science Advances 3 (5) (2017) e1603015. doi:
    10.1126/sciadv.1603015.
    [41] J. Behler, Constructing high-dimensional neural network potentials: A tutorial review, International Jour-
    nal of Quantum Chemistry 115 (16) (2015) 1032–1050. doi:10.1002/qua.24890.
    [42] T. D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, A universal strategy for the
    creation of machine learning-based atomistic force fields, npj Computational Materials 3 (1) (2017) 37.
    doi:10.1038/s41524-017-0042-y.
    [43] Z. Li, J. R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-
    mechanical forces, Physical Review Letters 114 (9) (2015) 096405.
    doi: 10.1103/ PhysRevLett.
    114.096405.
    [44] M. Gastegger, J. Behler, P. Marquetand, Machine learning molecular dynamics for the simulation of
    infrared spectra, Chemical Science 8 (10) (2017) 6924–6935. doi:10.1039/C7SC02267K.
    [45] A. P. Bartók, M. J. Gillan, F. R. Manby, G. Csányi, Machine-learning approach for one- and two-body
    corrections to density functional theory: Applications to molecular and condensed water, Physical Review
    B 88 (5) (2013) 054104. doi:10.1103/PhysRevB.88.054104.
    [46] S. Decherchi, A. Berteotti, G. Bottegoni, W. Rocchia, A. Cavalli, The ligand binding mechanism to purine
    nucleoside phosphorylase elucidated via molecular dynamics and machine learning, Nature Communica-
    tions 6 (2015) 6155. doi:10.1038/ncomms7155.
    [47] D. S. Glazer, R. J. Radmer, R. B. Altman, Combining molecular dynamics and machine learning to im-
    prove protein function recognition, Pacific Symposium on Biocomputing. Pacific Symposium on Bio-
    computing (2008) 332–343.
    [48] N. E. Jackson, M. A. Webb, J. J. de Pablo, Recent advances in machine learning towards multiscale
    soft materials design, Current Opinion in Chemical Engineering 23 (2019) 106–114. doi:https://doi.org/
    10.1016/j.coche.2019.03.005.
    [49] A. D. Sendek, E. D. Cubuk, E. R. Antoniuk, G. Cheon, Y. Cui, E. J. Reed, Machine learning-assisted dis-
    covery of solid li-ion conducting materials, Chemistry of Materials 31 (2) (2019) 342–352. doi:10.1021/
    acs.chemmater.8b03272.
    [50] H. Dureckova, M. Krykunov, M. Z. Aghaji, T. K. Woo, Robust machine learning models for predicting
    high co2 working capacity and co2/h2 selectivity of gas adsorption in metal organic frameworks for pre-
    combustion carbon capture, The Journal of Physical Chemistry C 123 (7) (2019) 4133–4139. doi:10.1021/
    acs.jpcc.8b10644.
    [51] J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy
    surfaces, Physical Review Letters 98 (14) (2007) 146401. doi:10.1103/PhysRevLett.98.146401.
    [52] L. Bonati, Y.-Y. Zhang, M. Parrinello, Neural networks based variationally enhanced sampling, eprint
    arXiv:1904.01305 (2019) arXiv:1904.01305.
    [53] R. Galvelis, Y. Sugita, Neural network and nearest neighbor algorithms for enhancing sampling of molec-
    ular dynamics, Journal of Chemical Theory and Computation 13 (6) (2017) 2489–2500. doi:10.1021/
    acs.jctc.7b00188.
    [54] E. Schneider, L. Dai, R. Q. Topper, C. Drechsel-Grau, M. E. Tuckerman, Stochastic neural network
    approach for learning high-dimensional free energy surfaces, Physical Review Letters 119 (15) (2017)
    150601. doi:10.1103/PhysRevLett.119.150601.
    [55] M. M. Sultan, H. K. Wayment-Steele, V. S. Pande, Transferable neural networks for enhanced sampling of
    protein dynamics, Journal of Chemical Theory and Computation 14 (4) (2018) 1887–1894. doi:10.1021/
    acs.jctc.8b00025.
    [56] L. Zhang, H. Wang, W. E, Reinforced dynamics for enhanced sampling in large atomic and molecular
    systems, The Journal of Chemical Physics 148 (12) (2018) 124113. doi:10.1063/1.5019675.
    [57] H. Sidky, J. K. Whitmer, Learning free energy landscapes using artificial neural networks, The Journal of
    Chemical Physics 148 (10) (2018) 104111. doi:10.1063/1.5018708.
    [58] A. Z. Guo, E. Sevgen, H. Sidky, J. K. Whitmer, J. A. Hubbell, J. J. de Pablo, Adaptive enhanced sampling
    by force-biasing using neural networks, The Journal of Chemical Physics 148 (13) (2018) 134108. doi:
    10.1063/1.5020733.
    [59] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational
    Physics 117 (1) (1995) 1 – 19. doi:https://doi.org/10.1006/jcph.1995.1039.
    [60] S. Boresch, M. Karplus, The jacobian factor in free energy simulations, The Journal of Chemical Physics
    105 (12) (1996) 5145–5154. doi:10.1063/1.472358.
    [61] N. Nakajima, H. Nakamura, A. Kidera, Multicanonical ensemble generated by molecular dynamics sim-
    ulation for enhanced conformational sampling of peptides, The Journal of Physical Chemistry B 101 (5)
    (1997) 817–824. doi:10.1021/jp962142e.
    [62] C. Junghans, D. Perez, T. Vogel, Molecular dynamics in the multicanonical ensemble: Equivalence
    of wang–landau sampling, statistical temperature molecular dynamics, and metadynamics, Journal of
    Chemical Theory and Computation 10 (5) (2014) 1843–1847. doi:10.1021/ct500077d.
    [63] E. J. Barth, B. B. Laird, B. J. Leimkuhler, Generating generalized distributions from dynamical simulation,
    The Journal of Chemical Physics 118 (13) (2003) 5759–5768. doi:10.1063/1.1557413.
    [64] J. Dunkel, S. Hilbert, Phase transitions in small systems: Microcanonical vs. canonical ensembles, Physica
    A: Statistical Mechanics and its Applications 370 (2) (2006) 390 – 406. doi:https://doi.org/10.1016/
    j.physa.2006.05.018.
    [65] P. Labastie, R. L. Whetten, Statistical thermodynamics of the cluster solid-liquid transition, Phys. Rev.
    Lett. 65 (1990) 1567–1570. doi:10.1103/PhysRevLett.65.1567.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE