| 研究生: |
蕭育仁 Hsiao, Yu-Jen |
|---|---|
| 論文名稱: |
價數補償型鈣鈦礦(1-x)NaNbO3-xACrO3 (A=La、Bi)之介電性質研究 The Dielectric Properties of Valence Compensated Perovskite Oxide of (1-x)NaNbO3-xACrO3 (A=La、Bi) at Low Frequencies |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 價數補償型 、鈣鈦礦 、介電陶瓷 |
| 外文關鍵詞: | dielectric ceramic, perovskite, valence compensated |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以鈣鈦礦結構之NaNbO3材料為主探討對象,並以雙異價數LaCrO3及BiCrO3離子來取代NaNbO3基材,製備成(1-x)NaNbO3-xACrO3 (A=La、Bi)之價數補償型鈣鈦礦陶瓷體。本研究主要由三個部份所構成:(1)以反應燒結法製備NaNbO3介電陶瓷,(2)以固態反應法合成Na1-xLaxNb1-xCrxO3及其介電性質研究,(3)以固態反應法合成(1-x)NaNbO3-xBiCrO3雙相陶瓷及其介電性質研究。
本研究成功的以反應燒結法合成NaNbO3之緻密鈣鈦礦陶瓷。塊體在混合NaNbO3劑量比的原料直接壓胚且無煆燒步驟進行燒結,得單一NaNbO3鈣鈦礦相陶瓷在溫度1100-1200 ℃間。在1200 ℃燒結6小時後約22.9 %的高線收縮率及1.6 %的低開孔率,且約有95.4 %的理論密度。NaNbO3陶瓷不同燒結條件的電性質,在1170 ℃燒結可得最高介電常數約27,在高溫度下燒結漸漸變成高電阻的絕緣體。NaNbO3陶瓷分別在3和6小時的持溫,得到微米尺度的晶粒成長活化能約在87~90 kJ/mol (或5.4~5.7×1021 eV/mol)。當在1200 ℃燒結3小時下,可得之斜方形外觀(rhomb-shaped)晶粒具有清析可辨的邊線和平面,此結果接近於理想晶粒成長模型。
以固態反應法合成(1-x)NaNbO3-xACrO3 (A=La、Bi)之價數補償型鈣鈦礦電子陶瓷。Na1-xLaxNb1-xCrxO3 (0.01≦x≦0.4)的鈣鈦礦固溶體,當x0.05時由原來的斜方晶結構(orthorhombic)往立方晶結構(cubic)轉變,以離子半徑較大的La+3(1.32 Å)取代離子半徑較小的Na+1 (1.18 Å),因離子半徑效應之故,造成晶格常數上升。根據Arrhenius方程式所得之NLNC弛緩體陶瓷相對於組成x=0.2, 0.3和0.4時在介電弛緩過程所需的活化能分別為0.22, 0.21和0.19 eV,而偶極弛緩時間約10-11秒。根據阻抗分析量測,NLNC之介電陶瓷是由半導體的晶粒與高電阻晶界所組成的晶界層電容。據XRD分析此(1-x)NaNbO3-xBiCrO3之結構陶瓷在1250 ℃持溫3小時,顯示具有立方鈣鈦礦與焦綠石相混合結構,焦綠石含量則隨著x的增加而呈線性增加。1-x)NaNbO3-xBiCrO3之介電特性(在x=0.3具有似模糊相轉換(diffuse-like phase transition)的陶瓷,當量測頻率由0.5 kHz上升到100 kHz,發生最高介電常數(max)之溫度值隨著頻率變化約固定在63 ℃,從Cole-Cole阻抗分析結果顯示為晶界型電容。介電特性在x=0.4具有明顯遲緩體(relaxor-like)的現象,介電常數最高值(max)在頻率0.5, 1, 5, 10,和100 kHz時的溫度位置分別為55, 59, 67, 80和84 ℃,具有環保無鉛遲緩體的陶瓷潛在應用。
The present investigation focused on the NaNbO3, which has an perovskite structure. The perovskite ceramic NaNbO3 powders doped with double valence compensated LaCrO3 and BiCrO3 ions were synthesized. The experimentation consists three parts as: NaNbO3 oxides prepared using reaction-sintering method, Na1-xLaxNb1-xCrxO3 and (1-x)NaNbO3-xBiCrO3 characterized by solid state reaction.
The NaNbO3 perovskite dense ceramic has been successful synthesized by reaction-sintering method. The raw materials for stoichiometric NaNbO3 were weighted and pressed into disks. Without any calcining involved, the pellets were sintered directly and pure perovskite NaNbO3 was obtained between 1100 ℃ and 1200 ℃. The maximum linear shrinkage and minimum porosity of the NaNbO3 was 22.9 % and 1.6 % at 1200 ℃, respectively, and thus had high density about 95.4 % of the theoretical value. The dielectric properties of NaNbO3 ceramics sintered at 1170 ℃has a maximum about 27. In this study, the NaNbO3 ceramics became more insulating at higher sintering temperature. The activation energy of grain growth for 3 and 6 h were between 87~90 kJ/mol (or 5.4~5.7×1021 eV/mol) , respectively. The realistic rhomb-shaped grains in pellets were found with well-defined edges and face, which are similar to the ideal grain growth models at the temperature of 1200 ℃ for 3 h.
The valence compensated perovskite ceramics (1-x)NaNbO3-xACrO3 (A=La、Bi) was synthesized by solid-state reaction. The solid solution perovskite Na1-xLaxNb1-xCrxO3 (0.01 ≦ x≦ 0.4) system has the orthorhombic phase, and slowly transform to the cubic phase when x 0.05. These results can be arise to come from the substitution of La3+ (1.32 Å) ions for Na+(1.18 Å), which increased lattice constants. According to the Arrhenius relationship, NLNC relaxor ceramic with activation energy for relaxation process for x= 0.2, 0.3, and 0.4 were 0.22, 0.21, and 0.19 eV, respectively. The values of relaxation time constants were of the order 10-11 s. The impedance of the NLNC dielectric ceramics showed grain boundary capacitors effect with semiconducting grain and high resistivities in the grain boundary layers.
The crystal structures of the samples (1-x)NaNbO3-xBiCrO3 sintered at 1250 ℃ for 3 h were characterized as cubic perovskite-pyrochlore mixed phase from XRD patterns. The relative amounts of pyrochlore increased linearly with x content. The dielectric relaxation behavior for sample x= 0.3 involves a diffuse-like phase transition. The peak of max is fixed approximately at 63 ℃ as the frequency increased from 0.5 to 100 kHz. The complex impedance was used to verify the presence of grain boundary capacitors. The sample with x= 0.4 exhibited the relaxor-like phenomenon. The temperatures corresponding the max at frequencies 0.5, 1, 5, 10 and 100 kHz are 55, 59, 67, 80 and 84 ℃, respectively.
[1] M. T. Buscaglia, V. Buscaglia, M. Viniain, J.Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni and M. Nygren, Nanotechnology, 15 (2004) 1113.
[2] M. M. Silvan, L. F. Cobas, R. J. Mattin-Palma, M. H. Velez and J. M. Martinez, Surface and Coatings Technology, 151-152 (2002) 118.
[3] H. D. Megaw, Ferroelectrics 7 (1974) 87.
[4] L. E. Cross and B. J. Nicholson, Phil. Mag. 46 [7] (1955) 453.
[5] R. H. Dungan and R. D. Golding, J. Am. Ceram. Soc. 47 (1964) 74.
[6] M. W. Shafer and R. Roy, J. Amer. Ceram. Soc. 42 (1959) 482.
[7] V. A. Bokov and I. E. Mly, Sov. Phys. Solid State, 3 [3] (1961) 613.
[8] G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys, Solid state,1 [10] (1960) 1429.
[9] S. L. Swartz, T. R. Shrout , W. A. Schulze and L. E. Cross, J. Am. Ceram. Soc, 67 (1984) 311.
[10] S. Zhang, P. W. Rehring, C. Randall and Thomas R. Shrout, J. Crystal Growth, 234 (2002) 415.
[11] R. Zuo, L. Li, X. Hu and Z. Gui, Mater. Lett., 54 (2002) 185.
[12] T. T. Fang and H. K. Shiau, J. Am. Ceram. Soc., 87 (2004) 2072.
[13] S. Saha and T. P. Sinha, J. Phys. Condens Matter, 14 (2002)249.
[14] M. Yokosuka, Jpn. J. Appl. Phys., 34 (1995) 5338
[15] C. Y. Chung , Y. H. Chang and G. J. Chen, J. Appl. Phys., 96 (2004) 6624.
[16] H. S. Tewari, O. Parkash, V.B. Tare and D. Kumar, J. Mater. Sci., 25 (1990) 2181.
[17] V. Vashooka, L. Vasylechko, J. Zosel and U. Guth, Solid States Ionics, 159 (2003) 279.
[18] A. Aydi, H. Khemakhem, C. Boudaya, R. Von der Mühll and A. Simon, Solid State Sci. 6 (2004) 333.
[19] I. P. Raevski and S. A. Prosandeev, J. Phys. Chem. Solids 63 (2002) 1939.
[20] O. Parkash, R. Kumar, D. Kumar and D. Bahadur, J. Mater. Sci. Lett. 7 (1988) 383.
[21] E. Ksepko, E, Talik, A, Ratuszna, A, Molak, Z. Ujma and I. Gruszka, J. Alloys Compd. 386 (2005) 35.
[22] A. Chelkowski, “Dielectric Physics”, Silesian University Katowice, Poland (1979) 5.
[23] 吳朗,”電子陶瓷(介電陶瓷)”,全欣出版社 (1994) p.69
[24] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, John Wiley and Sons, New York, (1976), p.210.
[25] O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag, New York, (1974).
[26] W. H. Lee, W. A. Groen and D. Hennings, J. Electronceram., 5 (2000) 31.
[27] L.E. Cross,”Relaxor Ferroelectric“, Ferroelectric, 76 (1987) 241.
[28] Y. C. Liou , Mater. Lett. 58 (2004) 944.
[29] W. Z. Zhu, A. Kholkin, P.Q. Mantas and J. L. Baptista, J. Mater. Sci., 36 (2001) 4089.
[30] D. Hennings, A. Schnell and G. Simon, J. Am. Ceram. Soc. 65 (1982) 539.
[31] Stephen M. Neirman, J. Mater. Sci. 23 (1988) 3973.
[32] T. Martirena and J. C. Burfoot, J. Phys. C: Solid State Phys. 7 (1974) 3182.
[33] R. M. Glaister,”Barrier-Layer Dielectric”, Proc. Int. Conf. Components and Mats. Elec. Eng. IEE. Paper 3634 (1961) 1.
[34] F. Greuter and G. Blatter, Semicond. Sci. Technol., 5 (1990) 37.
[35] R. Waser and R. Hagenbeck, Acta Mater. 48 (2000) 797.
[36] M. N. Rahaman and L. C. De Jonghe, J. Am. Ceram. Soc. 76 [7] (1993) 1739.
[37] S. Yangyun and R. J. Brook, Sci. Sintering, 17 [1] (1985) 35.
[38] W. Jander,”Reaktionen im Festen Zustande bie Hobheren Temperature”, Z. Anorg. Allg.Chem. (in Ger) 163 (1927) 1.
[39] A. M. Ginstling and B. I. Brounshtein, J. Appl. Chem. USSR, 23 (1950) 1327.
[40] G. Valensi,”Cinetique de IOxydation de Spherules et de poudres Matallics”, C. R. Hebd. Seancs Acad. Sci. (in Fr.) 203 (1936) 309.
[41] R. E. Carter , J. Chem. Phys. 34 (1961) 2010.
[42] 蕭富山,"修正型統計燒結理論評估位添加、氧化鎂及氧化鋯添加氧化鋁燒結行為及顯微結構演進",國立成功大學材料科學及工程博士論文,2000
[43] R. L. Coble, J. Appl. Phys. 32 (1961) 787.
[44] C. Greskovich and J. H. Rosolowski, J. Am. Ceram. Soc. 59 (1976) 336.
[45] C. Herring, J. Appl. Phys. 21 (1950) 301.
[46] F. F. Lang, J. Am. Ceram. Soc. 67 (1984) 83.
[47] J. E. Burke and D. Turnbull, Prog. Metal Phys. 3 (1952) 220.
[48] W. D. Kingery, H .K. Bowen and D. R. Uhlmann, "Introduction to Ceramics" 2nd edition, John Wiley and Sons, New York, (1976), p.220.
[49] Y.C. Liou, Mater. Lett. 58 (2004) 944.
[50] B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Wiley, New York, (1978).
[51] H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., 22 (1967) 151.
[52] A. C. Larson and R. B. Von Dreele, “General Structure Analysis System,” Los Alamos National Laboratory, Los Alamos, (1988).
[53] T. Hungría, L. Pardo, A. Moure, and A. Castro, J. Alloys Compd., 395 (2005) 166.
[54] S. Lanfredi, L. Dessemond, and A. C. M. Rodrigue, J. Euro. Ceram. Soc., 20 (2000) 983.
[55] 李文景,〞鍶鋇鈮陶瓷固態反應及燒結行為之研究〞,國立成功大學材料科學及工程學系,博士論文,1997.
[56] Y. C. Liou, C. T. Wu, K. H. Tseng and T. C. Chung, Mater. Res. Bull. 40 (2005) 1483
[57] A. Castro, B. Jiménez, T. Hungría, A. Moure and L. Pardo, J. Euro. Ceram. Soc., 24 (2004) 941.
[58] S. G. Chen, Y. S. Yin, D. P. Wang and J. Lia, J. Crystal Growth 267 (2004) 100
[59] I. C. M. S. Santos, L. H. Loureiro, M. F. P. Silva and A. Cavaleiro, Polyhedron 21 (2002) 2009.
[60] Y. Matsuzukia, T. Kubotab, X. Y. Liua, M. Atakac and K. J. Takano, J. Crystal Growth 242 (2002) 199.
[61] M. Plomp, A. McPherson, A. J. Malkin, J. Crystal Growth, 237-239 (2002) 306.
[62] W. Jo, D. Y. Kim and N. M. Hwang, J. Am. Ceram. Soc., 89[8] (2006) 2369.
[63] O. Parkash, R. Kumar, D. Kumar and D. Bahadur, J. Mater. Sci. Lett. 7 (1988) 383.
[64] K. Lichtenecker,”Dielectric Constant of Natural and Synthetic Mixtures”, Phys. Z., 27 (1926) 115
[65] I. Santos, L. H. Loureiro, M. F. P. Silva and A. Cavaleiro, Polyhedron 21 (2002) 2009.
[66] M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T. Langhammer,”Donor- doping effect in BaTiO3 ceramic using positron annihilation spectroscopy”, Radiation Phys.Chem. 68 (2003) 549
[67] D. F. K. Hennings, R. Janssen and P. J. L. Reynen,“Control of Liquid-Phase- Enhanced Discontinuous Grain Growth in Barium Titanate”, J. Am. Ceram. Soc. 70 (1987) 23
[68] L.A. Xue, Y. Chen and R. J. Brook,” The Influence of IonicRadii on the Incorporation of Trivalent Dopants into BaTiO3”, Mater. Sci. Eng. B1 (1988)193
[69] C. Y. Chung, Y. H. Chang and G. J. Chen, J. Appl. Phys. 96 (2004) 6624.
[70] L. Groupp and H. U. Anderson, J. Am. Ceram. Soc. 59 (1976) 449.
[71] S. Neirman and I. Burn, J. Mater. Sci. 123 (1982) 1584.
[72] Y. Li, X. Yao and L. Zhang, Ceram. Int. 30 (2004) 1283.
[73] C. Ang and Zhi Yu, J. Appl. Phys. 96 (2002) 1487.
[74] R. K. Dwivedi, D. Kumar and O. Parlash, J. Mater. Sci. 36 (2001) 3649.
[75] R. Moos and K. H. Härdtl, J. Am. Ceram. Soc. 80 (1997) 2549.
[76] R. K. Dwivedi, D. Kumar and O. Parlash, J. Mater. Sci. 36 (2001) 3641.
[77] T. T. Fang and F. Y. Chen, J. Appl. Phys. 100 (2006) 014110.
[78] A. S. Nowick,S. Q. Fu, W. K. Lee, B. S. Lin and T. Scherban, Mater. Sci. Eng. B23 (1994) 19.
[79] S. Saha and T. P. Sinha, Phys. Rev. B 65 (2002) 134103.
[80] M. A. L. Nobre and S. Lanfredi, J. Appl. Phys. 93 (2003) 5557.
[81] R. K. Dwivedi, D. Kumar and O. Parkash, Br. Ceram. Trans. 100 (2001) 115.
[82] S. P. Singh, A. K. Singh, D. Pandey, H. Sharma, and O. Parkash, J. Mater. Res. 18 (2003) 2677.
[83] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner and A. W. Sleight, J. Solid State Chem., 151 (2000) 323.
[84] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. Jastrabik, J. Appl. Phys., 93 (2003) 4130.
[85] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S. M. Shapiro, Solid State Communications, 155 (2000) 217.
[86] P. Q. Mantas, J. Euro. Ceram. Soc. 19 (1999) 2079.
[87] A. K. Jonscher, “ Dielectric relaxation in Solids”, Chelsea Dielectrics Press Limited, London (1983) p.76
[88] A. R. West, T. B. Adams, F. D. Morrison and D. C. Sinclair, J. Euro. Ceram. Soc., 24 (2004) 1439.
[89] N. Yamaoka, Am. Ceram. Soc. Bull. 65 (1986) 1149.
[90] J. Fleig and J. Maier, J. Am. Ceram. Soc. 82 (1999) 3485.
[91] J. M. Sohn, M. R. Kim, S. I. Woo, Catalysis Today 83 (2003) 289.
[92] H. Du, X. Yao and L. Zang, Ceram. Int. 28 (2002) 231.
[93] F.J. Rotella, J.D. Jorgensen, B. Morosin and R.M. Biefeld, Solid State Ionics, 5 (1981) 455.
[94] M. Valant and P.K. Davis, J. Mater. Sci. 34 (1999) 5437.
[95] M.A.L. Nobre and S. Lanfredi, Appl. Phys. Lett. 82 (2003) 2284.
[96] A. Jaiswal and E. D. Wachsman, J. Electrochem. Soc. 152 (2005) 787.
[97] X. Liu , W. Su, Z. Lu , J. Liu , L. Pei , W. Liu, L. He, J. Alloys Comp. 305 (2000) 21.
[98] X. Liu, W. Su, Z. Lu, Mater. Chem. Phys. 82 (2003) 327.
[99] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, (J. Wiley, New York, 1976)
[100] A. Aydi, H. Khemakhem, C. Boudaya, A. Simon and R. Von der Mühll, Solid State Sci. 7 (2005) 249.
[101] L.E. Cross, Ferroelectrics 151 (1994) 305.
[102] D. Viehland, M. Wuttig and L.E. Cross, Ferroelectrics 120 (1991) 71.
[103] P. Singh, D. Kumar and O. Parkash, J. Appl. Phys. 97 (2005) 074103.
[104] C. Ang, Z. Yu, H.J. Youn, C.A. Randall, A.S. Bhalla and L.E. Cross, J. Nino, M. Lanagan, Appl. Phys. Lett. 80 (2002) 4807.
[105] G. H. Jonker, Solid State Electron. 7 (1964) 895.
[106] P.P. Rao, S.J. Liji, K.R. Nair and P. Koshy, Physica B 349 (2004) 115.
[107] R. Rai, S. Sharma and R.N.P. Choudhary, Mater. Lett. 57 (2003) 3574.
[108] S. Ananta and N. W. Thomas, J. Euro. Ceram. Soc. 19 (1999) 155.
[109] J. S. Kim, N. K. Kim and J. H. Kim, Mater. Lett. 58 (2004) 1358.
[110] C.C. Chiu, C.C. Li and S.B. Desu, J. Am. Ceram. Soc. 74 (1991) 38.
[111] A. Aydi, H. Khemakhem, C. Boudaya, R. Von der Mühll and A. Simon, Solid State Sci. 6 (2004) 333.
[112] J. Chen and M. P. Harmer, J. Am. Ceram. Soc. 73(1) (1990) 86.
[113] H. Wang and X. Yao, J. Mater. Res. 16 (2001) 83.
[114] B. E. Vugmeister and M.D. Glinichuk, Rev. Modern Phys. 62, (1990) 993.
[115] S. P. Singh, A. K. Singh, D. Pandey, H. Sharma and O. Parkash, J. Mater. Res. 18 (2003) 2677.
[116] D. C. Sinclair, T. B. Adams, F. D. Morrison and A. R. West, Appl. Phys. Lett. 80 (2002) 2153.
[117] X. Y. Wei, Y. J. Feng and X. Yao, Appl. Phys. Lett. 83, 2031 (2003).
[118] X. B. Wang, Z. X. Shen, Z. P. Hu, L. Qin, S. H. Tang and M. H. Kuok, J. Molecular Structure 385 (1996) 1.
[119] J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello and G. Lucazeau, J. Phys.: Condens. Matter. 12, (2000) 3267.
[120] 鍾朝宇,"複合型鈣鈦礦Ba1-xAx(Fe0.5Nb0.5)1-x/4O3 (A=La、Bi)之介電性質研究",國立成功大學材料科學及工程學系,博士論文,2005