研究生: |
蔣宜靜 Chiang, I-Ching |
---|---|
論文名稱: |
以分子動力學模擬3C碳化矽在高溫矽離子輻照下之微結構變化及膨脹反應 Molecular Dynamics Modeling for Irradiation-Induced Microstructural Evolution and Swelling of 3C-SiC |
指導教授: |
胡宣德
Hu, Hsuan-Teh |
共同指導教授: |
胡琪怡
Hu, Alice |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 分子動力學 、碳化矽 、雙溫模型 、LAMMPS |
外文關鍵詞: | molecular dynamics, silicon carbide, two temperature model, LAMMPS |
相關次數: | 點閱:84 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳化矽為優良的陶瓷材料及半導體材料,且在高溫的環境下,仍能擁有好的機械、抗輻照與抗腐蝕性質,因而在各種核能材料中受到高度的矚目。先前已經有許多文獻模擬碳化矽在高溫輻照下,其缺陷變化及膨脹效應,但是卻少有文獻考慮碳化矽中的電子對於高能量粒子的影響。作為核能材料必須能承受大量高能量的中子之撞擊,而當高速粒子射入材料時,材料中的電子海會消耗入射粒子的能量。為了在模擬系統中考慮此現象,必須引入雙溫模型,將電子-離子相互作用與電子耗能作用一併考慮。
本研究中以分子動力學軟體LAMMPS模擬在不同輻照溫度下,帶有10keV的高能量粒子射入3C結構的碳化矽,在系統中造成一連串的位移連鎖反應。為了考慮雙溫模型,統整電子-離子相互作用參數與電子耗能參數對模擬系統的影響,藉由原子系統及電子子系統的溫度變化與PKA的能量消散,選擇的參數設定為γ_p=200 g⁄(mol∙ps)、γ_s=40 g⁄(mol∙ps),再進行不同輻照溫度下的輻射效應之模擬。
將系統分別模擬400℃、800℃、1000℃、1200℃及1400℃五種不同的輻照溫度,除了與其他模擬文獻比較缺陷數量的模擬結果外,本研究將不同輻照溫度下模擬出的缺陷種類、位置及大小繪製於3D圖中,再與實驗文獻比較,整理得出因矽離子輻照而產生的小黑點缺陷、差排環、疊差環與空孔之位置及其各種缺陷種類生成之輻照溫度,並解釋其隨溫度的演變情形。也利用MATLAB程式將入射粒子及主要受撞擊而具有較高速度的粒子之路徑輸出,可以解釋缺陷的位置走向及分佈。另外,運用可視化軟體OVITO測量及計算各晶面的d-spacing之膨脹量,將數據整理後與實驗文獻比較,可推測各種缺陷型態對晶格膨脹行為之影響。
Nowadays, we mainly use thermal power to meet the power requirement in Taiwan, but the fossil fuel will run out some day. Therefore, nuclear electricity generation is the most important form of electricity generation and the microstructure for the construction of the nuclear fusion power plant is the key point of the safety for developing the electricity generation. In this research, the chosen material for microstructure is 3C-SiC, regarded as the most promising material for replacing zirconium alloy, the material for the fuel cladding now.
In this thesis, the simulation are performed with the LAMMPS molecular dynamics code. The simulation cell consists of about 216,000 atoms with 30x30x30 unit cells. We used a 9x9x9 coarse-grained cells, and there are about 300 atoms in each coarse-grained cell. The radiation effect obtained by this work will be compared with the experimental thesis published by Lin (2015) [4]. We observe the evolution of the microstructure by simulating 10 keV displacement cascade under identical primary knock-on atom. For this study, the simulation are performed for various electron-ion interaction parameter (20, 80, 400g/mol∙ps) and electronic stopping parameter (40, 200, 400g/mol∙ps), so that we could easily tell and compare the change as the parameters vary. And, the most important simulation in this study performed the environmental temperature under irradiation ranging from 400 to 1400 degree centigrade. The simulation would be compared with the experimental thesis published by Lin (2015) [4]. The simulation box would be output with many kinds of defect, and the result written above was same as the experimental thesis we selected to compare with.
[1] 黃平輝(民101年9月)。第四代反應器發展的十年回顧與近期展望,台電核能月刊,357。
[2] 福島第一核電廠事故,維基百科。取自https://zh.wikipedia.org/wiki/%E7%A6%8F%E5%B2%9B%E7%AC%AC%E4%B8%80%E6%A0%B8%E7%94%B5%E7%AB%99%E4%BA%8B%E6%95%85
[3] 何宗融(2008),「單晶碳化矽在高溫矽離子輻照下之微結構變化」,國立清華大學工程與系統科學所,碩士論文
[4] Y.R. Lin, C.S. Ku, C.Y. Ho, W.T. Chuang, S. Kondo, J.J. Kai (2015), “Irradiation-induced microstructural evolution and swelling of 3C-SiC”, Journal of Nuclear Materials, vol. 459, pp. 276-283
[5] W. Demtröder (2010). Atoms, molecules, and photons: An introduction to atomic-, molecular- and quantum physics [2nd version]. UK. Springer.
[6] B.J. Alder, T.E. Wainwright (1959), “Studies in molecular dynamics. I. General method”, Journal of Chemical Physics, vol. 31, pp. 459
[7] LAMMPS User Manual. Sandia National Labs and Temple University (2004). Retrieved from http://lammps.sandia.gov/
[8] A. Stukowski. OVITO User Manual. Retrieved from http://www.ovito.org/
[9] L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti (2007), “Handbook of SiC properties for fuel performance modeling”, Journal of Nuclear Materials, vol. 371, pp. 329-377
[10] 梁育綾(2012),「利用氣-液-固機制於矽基板上磊晶成長碳化矽薄膜之研究」,國立成功大學材料科學及工程所,碩士論文
[11] 林博文(民83),碳化矽及其他碳化物,陶瓷技術手冊,中華民國產業科技發展協進會,pp. 745-776
[12] S. Kondo, Y. Katoh, L.L. Snead (2009), “Cavity swelling and dislocation evolution in SiC at very high temperatures”, Journal of Nuclear Materials, vol. 386–388, pp. 222–226
[13] 何雋禹(2013),「利用超高解析電鏡分析單晶3C-碳化矽與SA-Tyrannohex 全纖維碳化矽複合材料在高溫矽離子輻照下之缺陷」,國立清華大學工程與系統科學所,碩士論文
[14] R.J. Price (1969), “Effects of fast-neutron irradiation on pyrolytic silicon carbide”, Journal of Nuclear Materials, vol. 33, pp. 17–22
[15] 張躍, 谷景華, 尚家香, 馬岳(民96),計算材料基礎,北京航空航天大學出版社,pp. 83-135
[16] D.M. Duffy, A.M. Rutherford (2007), “Including the effects of electronic stopping and electron-ion interactions in radiation damage simulation”, Journal of Physics: Condensed Matter, vol. 19, pp. 016207
[17] A.M. Rutherford, D.M. Duffy (2007), “The effect of electron-ion interactions on radiation damage simulations”, Journal of Physics: Condensed Matter, vol. 19, pp. 496201
[18] Stopping power (particle radiation). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Stopping_power_(particle_radiation)
[19] A. Caro, M. Victoria (1989), “Ion-electron interaction in molecular-dynamics cascades”, Physical Review A, vol. 40, pp. 2287
[20] 葉湘濤(民59年3月)。物質熱性質,科學月刊雜誌社,3。取自http://resource.blsh.tp.edu.tw/science/content/1970/00030003/0010.htm
[21] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (2001). Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe. New York. Wiley.
[22] M. Kriener, Y. Maeno, T. Oguchi, Z.A. Ren, J. Kato, T. Muranaka, J. Akimitsu (2008), “Specific heat and electronic states of superconducting boron-doped silicon carbide”, Physical Review B, vol. 78, pp. 024517
[23] C. Zhang, F. Mao, F.S. Zhang (2013), “Electron-ion coupling effects on radiation damage in cubic silicon carbide”, Journal of Physics: Condensed Matter, vol. 25, pp. 235402
[24] C.L. Phillips, R.J. Magyar, P.S. Crozier (2010), “A two-temperature model of radiation damage in α -quartz”, Journal of Chemical Physics, vol. 133, pp. 144711
[25] D.M. Duffy, S. Khakshouria, A.M. Rutherforda (2009), “Electronic effects in radiation damage simulations”, Nuclear Instruments and Methods in Physics Research Section B, vol. 267, pp. 3050-3054
[26] S. Plimpton (1995), “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, vol. 117, pp. 1-19
[27] G.D. Samolyuk, Y.N. Osetskiy, R.E. Stoller (2012), “Molecular dynamics modeling of 10 and 50 keV atomic displacement cascades in 3C-SiC”, Fusion Reactor Materials Program (DOE/ER-0313/52), vol. 52, pp. 122-128
[28] D.M. Duffy, A.M. Rutherford (2009), “Including electronic effects in damage cascade simulations”, Journal of Nuclear Materials, vol. 386-388, pp. 19-21
[29] J. Tersoff (1989), “Modeling solid-state chemistry: Interatomic potential for multicomponent systems”, Physical Review B, vol. 39, pp. 5566-5568
[30] G.D. Samolyuk, Y.N. Osetsky, R.E. Stoller (2015), “Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials”, Journal of Nuclear Material, vol. 465, pp. 83-88
[31] R. Devanathana, T. Diaz de la Rubia, W.J. Weber (1998), “Displacement threshold energies in β-SiC”, Journal of Nuclear Materials, vol. 253, pp. 47-52
[32] F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales (2001), “Ab initio and empirical-potential studies of defect properties in 3C-SiC”, Physical Review B, vol. 64, pp. 245208
[33] H. Miyazaki, T. Suzuki, T. Yano, T. Iseki (1992), “Effects of thermal annealing on the macroscopic dimension and lattice parameter of heavily neutron-irradiated silicon carbide”, Journal of Nuclear Science and Technology, vol. 29, pp. 656-663
[34] F. Gao, W.J. Weber (2002), “Empirical potential approach for defect properties in 3C-SiC”, Nuclear Instruments and Methods in Physics Research B, vol. 191, pp. 504-508
[35] D.W. Brenner(1990), “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Physical Review B, vol. 42, pp. 9458