簡易檢索 / 詳目顯示

研究生: 黃秉樺
Huang, Bing-Hua
論文名稱: 基於微擾理論之絕緣層覆矽濾波器設計與模擬
Design and Simulation of Directional Coupler Filters on SOI using Perturbation Theory
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 69
中文關鍵詞: 絕緣層覆矽波導濾波器
外文關鍵詞: silicon-on-insulator, waveguides, filters
相關次數: 點閱:142下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於濾波器理論分析與數值模擬,而論文中的絕緣層覆矽(SOI)雙模濾波器為非對稱方向耦合器(asymmetrical directional coupler, ADC),並以量子系統中的perturbation theory設計參數而成。論文首先介紹波導系統之基本理論,並討論近共振電磁場其二能階系統的光學相似性與波導系統的比較。
    我們利用量子系統中的perturbation theory與window functions設計出符合濾波效果的參數,並利用三維光子結構計算軟體(FIMMWAVE)模擬出雙模濾波器。其後比較雙模濾波器與傳統濾波器(conventional direction coupler filters)之頻寬特性,發現雙模與傳統濾波器其模擬結果符合我們以perturbation theory作出的預測。

    This thesis is devoted to the theoretical investigation and numerical simulations of filters based on silicon-on-insulator (SOI). The designed filters in this thesis are based on asymmetrical directional couplers filter and designed with perturbation theory. First we introduce and compare the theory of coupled-waveguide system with the quantum-optical analogies between coupled waveguide structure and two-level system driven by near-resonant laser.
    We then design the parameters of filters by perturbation theory and window functions and simulate the designed directional coupler filters by FIMMWAVE. Then we compare the bandwidth of designed directional coupler filters with that of conventional directional coupler filter. Finally, we find that the results of simulation agree with the theoretical predictions.

    中文摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Figures vi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Introduction 2 1.3 Organization of the Thesis 5 Chapter 2 Theoretical Analysis 6 2.1 Theory of Coupled-Waveguide System 6 2.1.1 Wave Equation for Dielectric Waveguides 6 2.1.2 EigenMode Expansion (EME) Method 10 2.1.3 Analytical Method for Ridge Waveguide based on SOI 12 2.1.4 Coupled-Mode Theory (CMT) 13 2.1.5 Codirectional Couplers 21 2.1.6 Directional Coupler Filters with Identical and Nonidentical Waveguides 24 2.2 Analogies between Waveguide Optics and Quantum Theory 27 2.2.1 Two-Level System: Rabi Oscillations 27 2.2.2 Connection between the Waveguide Optics and the Quantum Theory 32 2.3 Shortcuts to Adiabaticity (STA) and Perturbation Theory 33 2.3.1 Dynamical Invariants 33 2.3.2 Robustness against Wavelength Variations based on Perturbation Theory 35 Chapter 3 Simulation Results and Discussion 38 3.1 Schematic of the Ridge Waveguide used for Simulation 38 3.2 The Phase Matching Condition 39 3.3 The Parameters of Designed Directional Coupler Filters 41 3.3.1 Effective Indices as Functions of λ for Different Width of Waveguides 41 3.3.2 Coupling Coefficient 43 3.3.3 Theoretical Bandwidth Analysis 48 3.3.4 Window Functions 51 3.4 Design and Simulation of Directional Coupler Filters Using Perturbation Theory and Window Functions 59 3.4.1 Simulation of Designed Directional Coupler Filters by FIMMWAVE 59 3.4.2 Bandwidth Analysis 64 3.5 Discussion 66 Chapter 4 Conclusion 67 Reference 68

    1. Chin-Lin Chen, “Fundations for Guided-Wave Opticas, ” New Jersey: John Wiley & Sons, ch.6 (2007).
    2. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Gu´erin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A 88, 033406 (2013).
    3. Ary Syahriar, Vitor Marino Schneider, and S. Al-Bader, “The design of mode evolution couplers,” J. Lightwave Technol. 16, 1907-1914 (1998).
    4. K. Okamoto, “Fundamentals of Optical Waveguides,” 2nd ed., Academic Press, New York (2006).
    5. S.-Y. Tseng, “Development of linear and nonlinear components for integrated optical signal processing.” Ph.D. dissertation, University of Maryland, College Park, USA (2006).
    6. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons.” Proceed. SPIE. 4987, 69–82 (2003).
    7. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview.” J. Opt. Soc. Am. A 11, 963–983 (1994).
    8. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
    9. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).
    10. A. Yariv, “ Coupled-mode theory for guided wave optics,” IEEE J. Quant. Electron. 9, 919–933 (1973).
    11. D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu´erin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
    12. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22, 18849–18859 (2014).
    13. C.-P. Ho, S.-Y. Tseng, “Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 40, 4831-4834 (2015).
    14. Bjorn Broberg, B. Stefan Lindgren, Magnus G. Oberg, And Hao Jiang, “A novel integrated optics wavelength filter in InGaAsP-InP,” J. Lightwave Technol. 4, 196–203(1986).
    15. J. Noda, M. Fukuma, and O. Mikami,“Design calculations for directional couplers fabricated by Ti-Diffused Linbo3 waveguides,” Appl. Opt. 20, 2284–2290 (1981).
    16. R. C. Alferness and P. S. Cross, “Filter characteristics of codirectional coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. QE-14, 843–847 (1978).

    下載圖示 校內:2021-08-04公開
    校外:2021-08-04公開
    QR CODE