| 研究生: |
黃秉樺 Huang, Bing-Hua |
|---|---|
| 論文名稱: |
基於微擾理論之絕緣層覆矽濾波器設計與模擬 Design and Simulation of Directional Coupler Filters on SOI using Perturbation Theory |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 絕緣層覆矽 、波導 、濾波器 |
| 外文關鍵詞: | silicon-on-insulator, waveguides, filters |
| 相關次數: | 點閱:142 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於濾波器理論分析與數值模擬,而論文中的絕緣層覆矽(SOI)雙模濾波器為非對稱方向耦合器(asymmetrical directional coupler, ADC),並以量子系統中的perturbation theory設計參數而成。論文首先介紹波導系統之基本理論,並討論近共振電磁場其二能階系統的光學相似性與波導系統的比較。
我們利用量子系統中的perturbation theory與window functions設計出符合濾波效果的參數,並利用三維光子結構計算軟體(FIMMWAVE)模擬出雙模濾波器。其後比較雙模濾波器與傳統濾波器(conventional direction coupler filters)之頻寬特性,發現雙模與傳統濾波器其模擬結果符合我們以perturbation theory作出的預測。
This thesis is devoted to the theoretical investigation and numerical simulations of filters based on silicon-on-insulator (SOI). The designed filters in this thesis are based on asymmetrical directional couplers filter and designed with perturbation theory. First we introduce and compare the theory of coupled-waveguide system with the quantum-optical analogies between coupled waveguide structure and two-level system driven by near-resonant laser.
We then design the parameters of filters by perturbation theory and window functions and simulate the designed directional coupler filters by FIMMWAVE. Then we compare the bandwidth of designed directional coupler filters with that of conventional directional coupler filter. Finally, we find that the results of simulation agree with the theoretical predictions.
1. Chin-Lin Chen, “Fundations for Guided-Wave Opticas, ” New Jersey: John Wiley & Sons, ch.6 (2007).
2. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Gu´erin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A 88, 033406 (2013).
3. Ary Syahriar, Vitor Marino Schneider, and S. Al-Bader, “The design of mode evolution couplers,” J. Lightwave Technol. 16, 1907-1914 (1998).
4. K. Okamoto, “Fundamentals of Optical Waveguides,” 2nd ed., Academic Press, New York (2006).
5. S.-Y. Tseng, “Development of linear and nonlinear components for integrated optical signal processing.” Ph.D. dissertation, University of Maryland, College Park, USA (2006).
6. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons.” Proceed. SPIE. 4987, 69–82 (2003).
7. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview.” J. Opt. Soc. Am. A 11, 963–983 (1994).
8. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
9. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).
10. A. Yariv, “ Coupled-mode theory for guided wave optics,” IEEE J. Quant. Electron. 9, 919–933 (1973).
11. D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu´erin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
12. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22, 18849–18859 (2014).
13. C.-P. Ho, S.-Y. Tseng, “Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 40, 4831-4834 (2015).
14. Bjorn Broberg, B. Stefan Lindgren, Magnus G. Oberg, And Hao Jiang, “A novel integrated optics wavelength filter in InGaAsP-InP,” J. Lightwave Technol. 4, 196–203(1986).
15. J. Noda, M. Fukuma, and O. Mikami,“Design calculations for directional couplers fabricated by Ti-Diffused Linbo3 waveguides,” Appl. Opt. 20, 2284–2290 (1981).
16. R. C. Alferness and P. S. Cross, “Filter characteristics of codirectional coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. QE-14, 843–847 (1978).