簡易檢索 / 詳目顯示

研究生: 黃敏儀
Yi, Christina Wong Min
論文名稱: 探討能幫助E. coli攝鐵的抗藥接合質體
Identification and characterization of conjugative antibiotic-resistant plasmids that facilitate Escherichia coli to uptake iron.
指導教授: 鄧景浩
Teng, Ching-Hao
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 95
中文關鍵詞: 質體抗藥性攝鐵系統fec 操縱子細菌致病性
外文關鍵詞: Plasmid, antibiotic resistance, iron acquisition system, fec operon, bacterial pathogenesis
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質體可作為基因在細菌間水平轉移的重要工具。許多位於質體上的抗藥基因以及毒力因子可透過接合質體而在細菌間有效的傳播,進而藉由接合生殖的方式進行水平轉移。因此,帶有抗藥基因以及毒力因子的接合質體在臨床上是一嚴重的問題,因為接合質體可將抗藥基因以及毒力因子快速地在細菌間散播。鐵是一種對於致病菌很重要的營養素及生長因子,在細菌的感染中也扮演了重要的角色。細菌為了對抗宿主中缺鐵的環境而演化出多套的攝鐵系統。因此,細菌所攜帶的攝鐵基因亦被認為是毒力基因。
    在本篇研究中,我們主要的目的是探討帶有攝鐵系統的抗藥接合質體。首先,我們分別將36株以及27株帶有Ampicillin抗性的大腸桿菌以及克雷白氏桿菌中的接合質體送到攝鐵缺失菌株中,進而將這些帶質體的接合菌株培養在缺鐵的環境並外加不同的鐵離子來檢測這些菌株所攜帶的質體是否具有攝鐵能力。另外,我們也利用CAS assay來檢測接合菌株所攜帶質體是否具有產生siderophore的能力。根據上述的方法,我們發現了三個具有攝鐵能力的質體,包括pEKP8,pEC41以及pEKP70,而其中pEKP70同時具有產生siderophore的能力。我們進一步將pEKP8以及pEC41進行定序後得到以下的結果。pEC41是86 kb大小,IncL/M group的質體,同時帶有blaCTX-M-3 及blaTEM-1抗藥基因,以及攝取檸檬酸鐵的fec 操縱子。我們發現fec 操縱子能夠幫助細菌攝取鐵,同時對於細菌在全身性感染中宿主的血液以及器官中存活扮演了一定的角色。而pEKP8則是136.8 kb,IncFIIK1-FIB型的質體,同時攜帶了blaDHA-1及qnrB4抗藥基因以及損壞的fec 操縱子 fecIR1-259。我們也發現了基因fecIR1 259能幫助細菌攝鐵。總的來說,質體上完整以及損壞的fec操縱子都能夠幫助細菌攝鐵且細菌能利用質體上完整的fec操縱子作為毒力因子,並增強其感染能力。

    Plasmids are important vehicles for horizontal gene transfer among bacteria. The antibiotic resistance genes and virulence genes can be carried and horizontally transferred via the plasmid vehicles. Conjugative plasmid can be effectively transferred among bacterial population through conjugation. In clinical setting the conjugative plasmids carrying both antibiotic resistant genes and virulence genes are exceptionally problematic, because the efficient plasmid transmission by conjugation may lead to rapid dissemination of the antibiotic resistance genes and virulence genes among bacterial population. Iron is an important nutrient and growth factor for pathogenic bacteria and plays a vital role in infection. Bacteria have evolved a number of mechanisms for the acquisition of adequate iron from the iron-restricted host environment. Thus, the bacterial genes encoding the iron uptake ability is considered as virulence genes.
    In this study, we focused on identifying and characterizing conjugative antibiotic-resistant plasmids that provided the iron acquisition system. We screened 36 Escherichia coli and 27 Klebsiella pneumoniae ampicillin-resistant conjugative plasmids for the ones able to facilitate bacterial iron uptake. These plasmids were transferred into iron-uptake defective E. coli strains through conjugation. Then the trans-conjugants were subjected to the iron source growth promotion test with different iron sources and subjected to chrome azurol S (CAS) assay to screen for the plasmids able to provide the ability to produce siderophore. Three plasmids pEKP8, pEC41, and pEKP70 was identified to be involved in providing iron uptake ability and pEKP70 was shown to be able to produce siderophore. pEKP8 and pEC41 were sequenced and their sizes were determined to be 136.8 kb and 86 kb. EC41 belonged to the IncL/M group, harbored the blaCTX-M-3 and blaTEM-1 genes, and carried the fec operon encoding the ferric citrate transport system. The fec operon was involved in promoting the iron uptake ability of the bacterial hosts. This operon contributed to the bacterial survival in the bloodstream and the host organs during the course of systemic infection. pEKP8 belonged to IncFIIK1-FIB-like, harbored the blaDHA-1 and qnrB4 genes and carried a truncated fec operon fecIR1-259. The fecIR1-259 was shown to be responsible for the iron-uptake ability encoded in pEKP8. In conclusion, the intact and truncated fec operons on the plasmids were able to increase the bacterial ability to acquire iron in hosts. The plasmid-encoded fec operon can serve as virulence genes to facilitate bacterial infections.

    中文摘要 I Abstract III Acknowledgments V Table of Contents VII List of Tables X List of Figures XI 1. Introduction 1 1.1 Enterobacteriaceae 1 1.1.1 E. coli 1 1.1.2 K. pneumoniae 1 1.2 Antibiotic resistance 2 1.2.1 ESBLs 3 1.2.2 AmpC β-lactamases 4 1.2.3 Quinolone resistance 4 1.3 Plasmids 5 1.3.1 Plasmid incompatibility 6 1.3.2 IncL/M plasmid 7 1.3.3 IncF plasmid 8 1.4 Iron 9 1.4.1 Non-heme iron acquisition system 10 1.4.2 Heme acquisition system 11 1.4.3 Ferric citrate acquisition system 12 2. Specific Aim 14 3. Materials and Methods 15 3.1 Bacterial strain and growth condition 15 3.2 Conjugation 15 3.3 Iron source growth promotion test 16 3.4 CAS assay 17 3.4.1 Preparation of CAS agar medium 17 3.4.2 Siderophore production assay 17 3.5 Plasmid DNA isolation 17 3.5.1 Kado and Liu Method 17 3.5.2 Maxi plasmid DNA preparation for sequencing 18 3.6 Complete plasmid sequence analysis 18 3.6.1 Sequencing, de novo assembly of DNA reads and gap closure 18 3.6.2 Annotation and Comparative genomics 19 3.7 Amplification and DNA sequencing of genomic elements on pEC41 and pEKP8 19 3.7.1 PCR 19 3.7.2 Agarose gel electrophoresis. 20 3.7.3 PCR products clean up and sequencing 20 3.8 Inactivation of genes on pEC41 and pEKP8 21 3.8.1 Design and generating of a DNA integrative cassette with antibiotic resistance selective marker 21 3.8.2 Red recombination and selection of mutant plasmids 21 3.8.3 Confirmation of gene inactivation 22 3.9 Murine co-challenge model of bacteremia 23 3.9.1 Preparation of inoculum 23 3.9.2 Tail vein injection and sample collection 23 3.9.3 Plating and competition index (CI) calculation 24 3.10 Statistical analyses 24 4. Results 25 4.1 Development of trans-conjugants containing E. coli and K. pneumoniae plasmids 25 4.2 Screen for the iron-acquisition related plasmids 26 4.3 Characterization of plasmid pEC41 27 4.3.1 Overall sequencing analysis of the plasmid pEC41 27 4.3.2 Plasmid backbone 28 4.3.3 Antibiotic resistance and virulence genes 29 4.3.4 The role of fec operon on pEC41 in iron acquisition 31 4.3.5 The role of the fec operon of pEC41 in systemic infection 31 4.4 Characterization of plasmid pEKP8 32 4.4.1 Overall sequencing analysis of plasmid pEKP8 32 4.4.2 Plasmid backbone 32 4.4.3 Antibiotic resistance genes 34 4.4.4 Iron acquisition genes 35 5. Discussion 38 Tables & Figures 42 References 85

    1 Guarner, F. & Malagelada, J.-R. Gut flora in health and disease. The Lancet 361, 512-519, doi:10.1016/s0140-6736(03)12489-0 (2003).
    2 Hacker, J. & Heesemann, J. Molecular infection biology: interactions between microorganisms and cells. (John Wiley & Sons, Inc., 2002).
    3 Kuhnert, P., Nicolet, J. & Frey, J. Rapid and accurate identification of Escherichia coli K-12 strains. Applied and environmental microbiology 61, 4135-4139 (1995).
    4 Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123-140, doi:10.1038/nrmicro818 (2004).
    5 Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical microbiology reviews 11, 589-603 (1998).
    6 Chen, Y. T. et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337, 189-198, doi:10.1016/j.gene.2004.05.008 (2004).
    7 Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences 112, E3574-E3581 (2015).
    8 Al-Marzooq, F., Mohd Yusof, M. Y. & Tay, S. T. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae. PLoS One 10, e0133654, doi:10.1371/journal.pone.0133654 (2015).
    9 Paterson, D. L. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. Am J Med 119, S20-28; discussion S62-70, doi:10.1016/j.amjmed.2006.03.013 (2006).
    10 Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrobial agents and chemotherapy 53, 2227-2238 (2009).
    11 Carattoli, A. Plasmids and the spread of resistance. Int J Med Microbiol 303, 298-304, doi:10.1016/j.ijmm.2013.02.001 (2013).
    12 Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. & Kamal, M. A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 22, 90-101, doi:10.1016/j.sjbs.2014.08.002 (2015).
    13 Brolund, A. & Sandegren, L. Characterization of ESBL disseminating plasmids. Infect Dis (Lond) 48, 18-25, doi:10.3109/23744235.2015.1062536 (2016).
    14 Knothe, H., Shah, P., Krcmery, V., Antal, M. & Mitsuhashi, S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11, 315-317, doi:10.1007/bf01641355 (1983).
    15 Bradford, P. A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14, 933-951, table of contents, doi:10.1128/CMR.14.4.933-951.2001 (2001).
    16 Paterson, D. L. & Bonomo, R. A. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18, 657-686, doi:10.1128/CMR.18.4.657-686.2005 (2005).
    17 Canton, R. & Coque, T. M. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 9, 466-475, doi:10.1016/j.mib.2006.08.011 (2006).
    18 Hawkey, P. M. & Jones, A. M. The changing epidemiology of resistance. J Antimicrob Chemother 64 Suppl 1, i3-10, doi:10.1093/jac/dkp256 (2009).
    19 Wellington, E. M. H. et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases 13, 155-165, doi:10.1016/s1473-3099(12)70317-1 (2013).
    20 Rossolini, G. M., D'Andrea, M. M. & Mugnaioli, C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 14 Suppl 1, 33-41, doi:10.1111/j.1469-0691.2007.01867.x (2008).
    21 Canton, R., Gonzalez-Alba, J. M. & Galan, J. C. CTX-M Enzymes: Origin and Diffusion. Front Microbiol 3, 110, doi:10.3389/fmicb.2012.00110 (2012).
    22 Jacoby, G. A. AmpC beta-lactamases. Clin Microbiol Rev 22, 161-182, Table of Contents, doi:10.1128/CMR.00036-08 (2009).
    23 Lister, P. D., Wolter, D. J. & Hanson, N. D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22, 582-610, doi:10.1128/CMR.00040-09 (2009).
    24 Peter-Getzlaff, S. et al. Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 49, 2924-2932, doi:10.1128/JCM.00091-11 (2011).
    25 Lewis, J. A., Moore, P. C. L., Arnold, D. L. & Lawrance, L. M. Chromosomal ampC mutations in cefpodoxime-resistant, ESBL-negative uropathogenic Escherichia coli. British Journal of Biomedical Science 72, 7-11, doi:10.1080/09674845.2015.11666789 (2016).
    26 Yan, J. J., Ko, W. C., Jung, Y. C., Chuang, C. L. & Wu, J. J. Emergence of Klebsiella pneumoniae Isolates Producing Inducible DHA-1 -Lactamase in a University Hospital in Taiwan. Journal of Clinical Microbiology 40, 3121-3126, doi:10.1128/jcm.40.9.3121-3126.2002 (2002).
    27 Paton, J. & Reeves, D. Fluoroquinolone antibiotics. Drugs 36, 193-228 (1988).
    28 Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. 1, 8-Naphthyridine derivatives. A new class of chemotherapeutic agents. Journal of Medicinal Chemistry 5, 1063-1065 (1962).
    29 Hooper, D. C. Emerging mechanisms of fluoroquinolone resistance. Emerging infectious diseases 7, 337 (2001).
    30 Jacoby, G. A. Mechanisms of Resistance to Quinolones. Clinical Infectious Diseases 41, S120-S126, doi:10.1086/428052 (2005).
    31 Redgrave, L. S., Sutton, S. B., Webber, M. A. & Piddock, L. J. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22, 438-445, doi:10.1016/j.tim.2014.04.007 (2014).
    32 Martínez-Martínez, L., Pascual, A. & Jacoby, G. A. Quinolone resistance from a transferable plasmid. The Lancet 351, 797-799, doi:10.1016/s0140-6736(97)07322-4 (1998).
    33 Cattoir, V., Poirel, L. & Nordmann, P. Plasmid-mediated quinolone resistance determinant QnrB4 identified in France in an Enterobacter cloacae clinical isolate coexpressing a QnrS1 determinant. Antimicrob Agents Chemother 51, 2652-2653, doi:10.1128/AAC.01616-06 (2007).
    34 Tran, J. H., Jacoby, G. A. & Hooper, D. C. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 49, 118-125, doi:10.1128/AAC.49.1.118-125.2005 (2005).
    35 Paterson, D. L. et al. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum β-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clinical Infectious Diseases 30, 473-478 (2000).
    36 Yang, H. F., Cheng, J., Hu, L. F., Ye, Y. & Li, J. B. Plasmid-mediated quinolone resistance in extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Serratia marcescens in China. Antimicrob Agents Chemother 56, 4529-4531, doi:10.1128/AAC.00493-12 (2012).
    37 Wu, J. J., Ko, W. C., Wu, H. M. & Yan, J. J. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital, 1999-2005. J Antimicrob Chemother 61, 1234-1239, doi:10.1093/jac/dkn111 (2008).
    38 Novick, R. P. Plasmid incompatibility. Microbiological reviews 51, 381 (1987).
    39 Pinto, U. M., Pappas, K. M. & Winans, S. C. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10, 755-765, doi:10.1038/nrmicro2882 (2012).
    40 Sengupta, M. & Austin, S. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 79, 2502-2509, doi:10.1128/IAI.00127-11 (2011).
    41 Austin, S., Ziese, M. & Sternberg, N. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25, 729-736 (1981).
    42 Couturier, M., Bex, F., Bergquist, P. & Maas, W. Identification and classification of bacterial plasmids. Microbiological reviews 52, 375 (1988).
    43 Hayes, F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496-1499 (2003).
    44 Clewell, D. B. Antibiotic Resistance Plasmids in Bacteria. eLS (2014).
    45 Bennett, P. M. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153 Suppl 1, S347-357, doi:10.1038/sj.bjp.0707607 (2008).
    46 Datta, N. & Hedges, R. Compatibility groups among fi− R factors. (1971).
    47 Carattoli, A. et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63, 219-228, doi:10.1016/j.mimet.2005.03.018 (2005).
    48 Carattoli, A., Seiffert, S. N., Schwendener, S., Perreten, V. & Endimiani, A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PloS one 10, e0123063 (2015).
    49 Adamczuk, M. et al. Diversity and global distribution of IncL/M plasmids enabling horizontal dissemination of β-lactam resistance genes among the Enterobacteriaceae. BioMed research international 2015 (2015).
    50 Preston, K. E., Hitchcock, S. A., Aziz, A. Y. & Tine, J. A. The complete nucleotide sequence of the multi-drug resistance-encoding IncL/M plasmid pACM1. Plasmid 76, 54-65 (2014).
    51 Mierzejewska, J., Kulinska, A. & Jagura-Burdzy, G. Functional analysis of replication and stability regions of broad-host-range conjugative plasmid CTX-M3 from the IncL/M incompatibility group. Plasmid 57, 95-107, doi:10.1016/j.plasmid.2006.09.001 (2007).
    52 Woodford, N. et al. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 53, 4472-4482, doi:10.1128/AAC.00688-09 (2009).
    53 Dolejska, M. et al. Dissemination of IncFII(K)-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards. Int J Antimicrob Agents 40, 510-515, doi:10.1016/j.ijantimicag.2012.07.016 (2012).
    54 Villa, L., Garcia-Fernandez, A., Fortini, D. & Carattoli, A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65, 2518-2529, doi:10.1093/jac/dkq347 (2010).
    55 Bergquist, P. L., Saadi, S. & Maas, W. K. Distribution of basic replicons having homology with RepFIA, RepFIB, and RepFIC among IncF group plasmids. Plasmid 15, 19-34 (1986).
    56 O'Hara, J. A. et al. Molecular epidemiology of KPC-producing Escherichia coli: occurrence of ST131-fimH30 subclone harboring pKpQIL-like IncFIIk plasmid. Antimicrobial agents and chemotherapy 58, 4234-4237 (2014).
    57 Schaible, U. E. & Kaufmann, S. H. Iron and microbial infection. Nat Rev Microbiol 2, 946-953, doi:10.1038/nrmicro1046 (2004).
    58 Messenger, A. J. & Barclay, R. Bacteria, iron and pathogenicity. Biochemical Education 11, 54-63 (1983).
    59 Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiology Reviews 27, 215-237, doi:10.1016/s0168-6445(03)00055-x (2003).
    60 Skaar, E. P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6, e1000949 (2010).
    61 Parrow, N. L., Fleming, R. E. & Minnick, M. F. Sequestration and scavenging of iron in infection. Infect Immun 81, 3503-3514, doi:10.1128/IAI.00602-13 (2013).
    62 Braun, V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291, 67-79, doi:10.1078/1438-4221-00103 (2001).
    63 Holden, V. I. & Bachman, M. A. Diverging roles of bacterial siderophores during infection. Metallomics 7, 986-995, doi:10.1039/c4mt00333k (2015).
    64 Bearden, S. W., Fetherston, J. D. & Perry, R. D. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infection and Immunity 65, 1659-1668 (1997).
    65 Armitage, A. E. & Drakesmith, H. The battle for iron. Science 346, 1299-1300, doi:10.1126/science.aaa2468 (2014).
    66 Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509-519, doi:10.1016/j.chom.2013.04.010 (2013).
    67 Wilks, A. & Burkhard, K. A. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep 24, 511-522, doi:10.1039/b604193k (2007).
    68 Filloux, A. Bacterial regulatory networks. (Horizon Scientific Press, 2012).
    69 Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annual reviews in microbiology 54, 881-941 (2000).
    70 Braun, V., Mahren, S. & Ogierman, M. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Current Opinion in Microbiology 6, 173-180, doi:10.1016/s1369-5274(03)00022-5 (2003).
    71 Braun, V. & Mahren, S. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 29, 673-684, doi:10.1016/j.femsre.2004.10.001 (2005).
    72 Mahren, S., Schnell, H. & Braun, V. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Arch Microbiol 184, 175-186, doi:10.1007/s00203-005-0035-y (2005).
    73 Kado, C., amp & Liu, S. Rapid procedure for detection and isolation of large and small plasmids. Journal of bacteriology 145, 1365-1373 (1981).
    74 Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34, D32-36, doi:10.1093/nar/gkj014 (2006).
    75 Alikhan, N.-F., Petty, N. K., Zakour, N. L. B. & Beatson, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC genomics 12, 1 (2011).
    76 Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645, doi:10.1073/pnas.120163297 (2000).
    77 Hsieh, F.-R. Investigate the potential iron-uptake genes on the plasmid of the pathogenic Escherichia coli Master thesis, National Cheng Kung University, (2014).
    78 Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75, doi:10.1186/1471-2164-9-75 (2008).
    79 Gerdes, K., Møller‐Jensen, J. & Jensen, R. B. Plasmid and chromosome partitioning: surprises from phylogeny. Molecular microbiology 37, 455-466 (2000).
    80 Tsuchimoto, S., Ohtsubo, H. & Ohtsubo, E. Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. Journal of bacteriology 170, 1461-1466 (1988).
    81 Literacka, E. et al. blaCTX-M genes in Escherichia coli strains from Croatian Hospitals are located in new (blaCTX-M-3a) and widely spread (blaCTX-M-3a and blaCTX-M-15) genetic structures. Antimicrob Agents Chemother 53, 1630-1635, doi:10.1128/AAC.01431-08 (2009).
    82 Lawley, T. D., Klimke, W. A., Gubbins, M. J. & Frost, L. S. F factor conjugation is a true type IV secretion system. FEMS Microbiology Letters 224, 1-15, doi:10.1016/s0378-1097(03)00430-0 (2003).
    83 Zong, Z., Partridge, S. R. & Iredell, J. R. ISEcp1-mediated transposition and homologous recombination can explain the context of bla(CTX-M-62) linked to qnrB2. Antimicrob Agents Chemother 54, 3039-3042, doi:10.1128/AAC.00041-10 (2010).
    84 Bonnin, R. A., Nordmann, P., Carattoli, A. & Poirel, L. Comparative genomics of IncL/M-type plasmids: evolution by acquisition of resistance genes and insertion sequences. Antimicrobial agents and chemotherapy 57, 674-676 (2013).
    85 Wright, M. S. et al. Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern US hospitals. Antimicrobial agents and chemotherapy 58, 4961-4965 (2014).
    86 Papagiannitsis, C. C. et al. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J Antimicrob Chemother, doi:10.1093/jac/dkw227 (2016).
    87 Leavitt, A., Chmelnitsky, I., Carmeli, Y. & Navon-Venezia, S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob Agents Chemother 54, 4493-4496, doi:10.1128/AAC.00175-10 (2010).
    88 Serfiotis-Mitsa, D. et al. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Nucleic Acids Res 38, 1723-1737, doi:10.1093/nar/gkp1144 (2010).
    89 Kroll, J., Klinter, S., Schneider, C., Voss, I. & Steinbuchel, A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 3, 634-657, doi:10.1111/j.1751-7915.2010.00170.x (2010).
    90 McMahon, S. A. et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res 37, 4887-4897, doi:10.1093/nar/gkp478 (2009).
    91 Tock, M. R. & Dryden, D. T. The biology of restriction and anti-restriction. Curr Opin Microbiol 8, 466-472, doi:10.1016/j.mib.2005.06.003 (2005).
    92 Bagdasarian, M. et al. An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli. Proceedings of the National Academy of Sciences 83, 5723-5726 (1986).
    93 Ghetu, A. F. et al. The FinO repressor of bacterial conjugation contains two RNA binding regions. Biochemistry 38, 14036-14044 (1999).
    94 Verdet, C. et al. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother 50, 607-617, doi:10.1128/AAC.50.2.607-617.2006 (2006).
    95 Darwin, A. J. The phage-shock-protein response. Mol Microbiol 57, 621-628, doi:10.1111/j.1365-2958.2005.04694.x (2005).
    96 Mason, K. M., Munson, R. S., Jr. & Bakaletz, L. O. A mutation in the sap operon attenuates survival of nontypeable Haemophilus influenzae in a chinchilla model of otitis media. Infect Immun 73, 599-608, doi:10.1128/IAI.73.1.599-608.2005 (2005).
    97 Mata, C. et al. Association of bla(DHA-1) and qnrB genes carried by broad-host-range plasmids among isolates of Enterobacteriaceae at a Spanish hospital. Clin Microbiol Infect 17, 1514-1517, doi:10.1111/j.1469-0691.2011.03539.x (2011).
    98 Wriedt, K., Angerer, A. & Braun, V. Transcriptional regulation from the cell surface: conformational changes in the transmembrane protein FecR lead to altered transcription of the ferric citrate transport genes in Escherichia coli. Journal of bacteriology 177, 3320-3322 (1995).
    99 Ochs, M. et al. Regulation of citrate‐dependent iron transport of Escherichia coli: FecR is required for transcription activation by Fecl. Molecular microbiology 15, 119-132 (1995).
    100 Harvie, D. R. & Ellar, D. J. A ferric dicitrate uptake system is required for the full virulence of Bacillus cereus. Curr Microbiol 50, 246-250, doi:10.1007/s00284-004-4442-0 (2005).
    101 Grootveld, M. et al. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. Journal of Biological Chemistry 264, 4417-4422 (1989).
    102 Sarkar, B. State of iron (III) in normal human serum: low molecular weight and protein ligands besides transferrin. Canadian journal of biochemistry 48, 1339-1350 (1970).
    103 Mahren, S. & Braun, V. The FecI Extracytoplasmic-Function Sigma Factor of Escherichia coli Interacts with the σ Subunit of RNA Polymerase. Journal of Bacteriology 185, 1796-1802, doi:10.1128/jb.185.6.1796-1802.2003 (2003).
    104 Cattoir, V., Nordmann, P., Silva-Sanchez, J., Espinal, P. & Poirel, L. ISEcp1-mediated transposition of qnrB-like gene in Escherichia coli. Antimicrob Agents Chemother 52, 2929-2932, doi:10.1128/AAC.00349-08 (2008).
    105 Lartigue, M. F., Poirel, L., Aubert, D. & Nordmann, P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother 50, 1282-1286, doi:10.1128/AAC.50.4.1282-1286.2006 (2006).
    106 Haldorsen, B. et al. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. J Antimicrob Chemother 62, 694-702, doi:10.1093/jac/dkn257 (2008).
    107 Verdet, C. et al. Genetic context of plasmid-carried blaCMY-2-like genes in Enterobacteriaceae. Antimicrob Agents Chemother 53, 4002-4006, doi:10.1128/AAC.00753-08 (2009).
    108 Ma, L., Siu, L. K. & Lu, P. L. Effect of spacer sequences between bla(CTX-M) and ISEcp1 on bla(CTX-M) expression. J Med Microbiol 60, 1787-1792, doi:10.1099/jmm.0.033910-0 (2011).
    109 Hashimoto, M. et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55, 137-149, doi:10.1111/j.1365-2958.2004.04386.x (2005).

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE