簡易檢索 / 詳目顯示

研究生: 陳宇修
Chen, Yu-Hsiu
論文名稱: 廢輪胎裂解油品氧化脫硫淨零之研究
Study on Oxidative Desulfurization and Net-Zero Emissions of Pyrolysis Oil Derived from Waste Tires
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 228
中文關鍵詞: 淨水污泥六價鐵氧化脫硫廢輪胎熱裂解油淨零排放
外文關鍵詞: water treatment sludge, hexavalent iron, oxidative desulfurization, waste tire pyrolysis oil, net-zero emissions
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源與環境永續為當前全球經濟發展之關鍵議題。廢輪胎熱裂解油品雖具有高熱值(41~46 MJ/kg)之燃料潛力,但其高濃度有機硫化物限制後續應用;同時,淨水處理過程產生之污泥處置亦為一大環境負擔。本研究旨在建立「以廢治廢」之循環經濟模式,利用彰化和美第三淨水場富含鐵、錳之淨水污泥製備六價鐵氧化劑,針對廢輪胎熱裂解油進行氧化脫硫研究,並透過生命週期評估探討其淨零排放路徑。
    結果分為兩大階段:首先進行氧化脫硫最佳化參數試驗,接著建構碳資訊揭露系統以評估環境衝擊。實驗結果顯示,以濕式氧化法製備之六價鐵,在最佳操作條件(莫耳比9:9:1、pH 5、乳化頭轉速3,200 rpm、反應溫度60 ℃及反應時間30分鐘)下,可將實際廢輪胎裂解油之含硫量由8,812.03 ppm降至6,217.48 ppm,脫硫效率約為29.44%。第二部分在環境效益評估方面,生命週期評估結果揭示,雖然廢輪胎裂解油本身具有較低之碳足跡(約0.31~0.67 kgCO2-eq./L),但經本研究之氧化脫硫程序後,單位油品之碳足跡大幅攀升至26.53 kgCO2-eq./L,各生命週期階段碳足跡由大至小依序為原料階段85.96%、製程階段7.18%、運輸階段6.84%、最終處置階段0.02%。
    綜上所述,本研究證實以淨水污泥製備氧化劑去除油品硫化物在技術上具可行性,但在現行製程條件下,因化學藥品與能源投入極高,其環境碳成本遠高於脫硫帶來之效益。如以連續超音波輔助氧化脫硫相較於本研究之氧化脫硫程序可減少74.51%,更具有低碳效益,未來研究可著重於提升氧化效率、選取低碳排化學試劑之使用及優化能源效率,方能實踐廢棄物資源化與淨零排放之目標。

    This study aims to establish a “waste-treats-waste” circular economy model by utilizing iron- and manganese-rich water treatment sludge from the Changhua Hemei Third Water Treatment Plant to synthesize Ferrate (VI) as an oxidant. This oxidant was applied in the oxidative desulfurization (ODS) of Waste Tire Pyrolysis Oil (WTPO), and its net-zero emission pathways were explored through Life Cycle Assessment (LCA).
    Experimental results indicate that Ferrate (VI) prepared via the wet oxidation method, under optimal operating conditions (molar ratio of 9:9:1, pH 5, emulsifier speed of 3,200 rpm, reaction temperature of 60°C, and a reaction time of 30 minutes), reduced the sulfur content of raw WTPO from 8,812.03 ppm to 6,217.48 ppm, achieving a desulfurization efficiency of approximately 29.44%.
    The LCA results revealed that while WTPO initially possesses a relatively low carbon footprint (approximately 0.31–0.67 kgCO₂-eq./L), the carbon footprint per unit of oil escalated significantly to 26.53 kgCO₂-eq./L following the ODS process developed in this study. The distribution of the carbon footprint across life cycle stages was as follows: raw material stage (85.96%), manufacturing process stage (7.18%), transportation stage (6.84%), and final disposal stage (0.02%).
    Compared to the ODS process in this study, continuous ultrasound-assisted oxidative desulfurization could potentially reduce carbon emissions by 74.51%, offering superior low-carbon benefits.

    中文摘要 II Abstract III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XV 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 5 第二章 文獻回顧 6 2.1 廢輪胎現況 6 2.1.1 廢輪胎回收技術 7 2.2 淨水污泥 8 2.2.1 淨水場污泥生成機制 9 2.2.2 淨水場污泥回收技術 11 2.3 硫氧化物 13 2.3.1 硫氧化物生成機制 14 2.3.2 硫氧化物對人體影響 14 2.3.3 硫氧化物相關法規 15 2.4 現行油品脫硫技術 16 2.4.1 加氫脫硫法 16 2.4.2 生物脫硫法 18 2.4.3 吸附脫硫法 19 2.4.4 氧化脫硫法 20 2.5 氧化脫硫氧化劑-六價鐵 22 2.5.1 六價鐵之物理特性 23 2.5.2 六價鐵之化學特性 24 2.5.3 六價鐵之製備 27 2.5.4 六價鐵之應用 32 2.6 生命週期評估 33 2.6.1 生命週期評估起源 33 2.6.2 生命週期評估理論與架構 36 2.5.2.1 生命週期目標與範疇界定 38 2.5.2.2 生命週期盤查分析 40 2.5.2.3 生命週期衝擊評估 40 2.5.2.4 生命週期闡釋 42 2.6.3 生命週期衝擊評估模式 43 2.6.3.1 Eco-indicator 99 43 2.6.3.2 Impact 2002+ 50 2.6.3.3 Environmental Footprint 3.1 54 2.7 淨零碳排路徑 58 2.7.1 碳足跡 58 第三章 研究方法 60 3.1 研究架構 60 3.2 試驗設備及器材 62 3.2.1 試驗藥品 62 3.2.2 試驗設備 63 3.2.3 樣品分析儀器 64 3.3 淨水污泥中鐵錳之浸析之試驗 69 3.4 製備氧化劑試驗 70 3.4.1 淨水污泥製備氧化劑 70 3.5 氧化脫硫系統 73 3.5.1氧化流程 74 3.6 生命週期評估 80 3.6.1 生命週期評估資料庫 80 3.6.2 生命週期評估流程 83 3.6.3 生命週期評價方法 84 3.6.3.1 環境衝擊評估 85 3.6.3.2 碳足跡 85 3.7 系統條件定義 90 3.7.1 系統範疇界定 90 3.7.2 情境分析與相關假設條件 91 3.7.2.1 情境分析 91 3.7.2.2 系統假設條件 92 3.7.3 資料來源與處理 100 3.7.3.1 資料彙整 100 第四章 結果與討論 102 4.1 廢輪胎熱裂解油品氧化脫硫參數試驗 102 4.1.1 廢輪胎熱裂解油品氧化脫硫試驗分析 103 4.2 廢輪胎熱裂解油品氧化脫硫生命週期盤查分析 105 4.2.1 本研究氧化脫硫試驗原料階段探討 105 4.2.1.1 原料階段碳足跡分析 106 4.2.1.2 原料階段環境衝擊分析 110 4.2.2 氧化脫硫試驗製程階段探討 126 4.2.2.1 製程階段碳足跡分析 126 4.2.2.2 製程階段環境衝擊分析 129 4.2.3 氧化脫硫試驗化學藥品運輸階段探討 140 4.2.3.1 運輸階段碳足跡分析 140 4.2.3.2 運輸階段環境衝擊分析 143 4.2.4 氧化脫硫試驗最終處置階段探討 154 4.2.4.1 最終處置階段碳足跡分析 154 4.2.4.2 最終處置階段環境衝擊分析 155 4.2.5 小結 164 4.3 研究個案油品與傳統燃料油品模擬 177 4.3.1 個案油品未脫硫前與傳統燃料油品碳足跡差異 177 4.3.2 個案油品經氧化脫硫與傳統燃料油品碳足跡之差異 178 4.4 個案油品減碳效益情形分析 180 4.4.1 個案油品氧化脫硫試驗敏感度分析 180 4.4.2 個案油品氧化脫硫試驗減碳效益分析 183 4.5 綜合討論 189 第五章 結論與建議 191 5.1 結論 191 5.2 建議 192 參考文獻 193

    1. Ahmad, T., Ahmad, K., & Alam, M. (2016). Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environmental Sciences, 35, 950-955.
    2. Ahmad, Tanveer., & Zhang, Dongdong. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 6, 1973-1991.
    3. Aida, T., Yamamoto, D., Iwata, M., & Sakata, K. (2000). Development of oxidative desulfurization process for diesel fuel. Reviews on Heteroatom Chemistry, 22, 241-256.
    4. American Lung Association, ALA. (2023). What is sulfur dioxide? Clean Air, https://reurl.cc/7MK0v9.
    5. Arancon, R.A.D., Lin, C.S.K., Chan, K.M., Kwan, T.H., & Luque, R. (2013). Advances on waste valorization: new horizons for a more sustainable society. Energy Science & Engineering, 1(2), 53-71.
    6. Asghar, Z. (2008). Energy–GDP relationship: a causal analysis for the five counties of south Asia. Applied Econometrics and International Development, 8-1, 167-180.
    7. Ayers, K.E., & White, N.C. (2005). Characterization of iron(VI) compounds and their discharge products in strongly alkaline electrolyte. Journal of The Electrochemical Society, 152(2), A467-473.
    8. Azeddine, F., Khadir, L.E., & Ali, I. (2022). Thermodynamic analysis and mathematic modeling of waste sludge from drinking water treatment plants. Journal of Ecological Engineering, 23(2), 140-149. 
    9. Azeddine, F., Sergio, P.A., Angelique, L., Khadir, L.E., Ali, I., & Houssayne, B.E. (2023). Rheological behavior and characterization of drinking water treatment sludge from Morocco. Clean Technologies, 5(1), 259-273.
    10. Baayen, H. (2000). Eco-indicator 99 manual for designer. Ministry of Health, Spatial Planning and the Environmental.
    11. Benlalla, A., Elmoussaouiti, M., Cherkaoui, M., , hsain, L.A., & Assafi, M. (2015). Characterization and valorization of drinking water sludges applied to agricultural spreading. Journal of Materials and Environmental Science, 6(6), 1692-1698.
    12. Beshtar, M., Ahmadi, S.M.M., Asgharinezhad, A.A., & Larimi, A. (2025). In-depth review: catalysis and process parameters in photocatalytic oxidative desulfurization of liquid transportation fuels. Journal of Cleaner Production, 508, 145462.
    13. Bhuttoa, A.W., Abroa, R., Gaoa, S., Abbas, T., Chen, X., & Yu, G. (2016). Oxidative desulfurization of fuel oils using ionic liquids: a review. Journal of the Taiwan Institute of Chemical Engineers, 62, 84-97.
    14. Campos-Martin, J.M., Capel-Sanchez, M.C., Perez-Presas, P., & Fierro, J.L.G. (2010). Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechnol, 85, 879-890.
    15. Centers for Disease Control and Prevention, CDC. (2022). Water and Healthier Drinks. Healthy Eating for a Healthy Weight, https://reurl.cc/QZYnnq.
    16. Chen, F., Liang, Y., Hu, M., Zeng, S., Zhou, Z., Cao, M., Chen, B., Wang, P., Shi, J., & Liang, Y. (2026). In situ solidification of fluoride in industrial wastewater using Ca-modified hydrophilic sludge ceramsite. Journal of Water Process Engineering, 82, 109393.
    17. Chen, L.J., & Li, F.T. (2015). Oxidative desulfurization of model gasoline over modified titanium silicalite. Petroleum Science and Technology, 33(2), 196-202.
    18. Chen, T.C., Shen, Y.H., Lee, W.J., Lin, C.C., & Wan, M.W. (2013). An economic analysis of the continuous ultrasound-assisted oxidative desulfurization process applied to oil recovered from waste tires, Journal of Cleaner Production, 39, 129-136.
    19. Chen, Y.H., Chio, A.E.S., Soriano, P.I.R., Xiao, M.J., Chen, W.S., & Wan, M.W. (2025). Applicability of Fe(VI)/Mn(VI)-enriched sludge in mixing-assisted oxidative desulfurization of dibenzothiophene. Journal of Cleaner Production, 527, 146708.
    20. Choi, A.E.S., Roces, S., Dugos, N., & Wan, M.W. (2016). Oxidation by H2O2 of bezothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization. Fuel, 127-136.
    21. Clean. (2023). Energy and Society. Teaching Climate and Energy. https://reurl.cc/edGXRx.
    22. Conservation International. (2025). What is a carbon footprint? https://reurl.cc/ZlVpGa.
    23. Cremades, L.V., Cusido, J.A., & Arteaga, F. (2018). Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. Journal of Cleaner Production, 201, 1071-1080.
    24. Czajczyńska, D., Krzyzyńska, R., Jouhara, H., & Spencer, N. (2017). Use of pyrolytic gas from waste tire as a fuel: a review. Energy, 134, 1121-1131.
    25. De Marines, F., Corsino, S.F., Castiglione, M., Capodici, M., Torregrossa, M., & Viviani, G. (2024). Ferrate as a sustainable and effective solution to cope with drinking water treatment plants challenges. Journal of Environmental Chemical Engineering, 12(3), 112884.
    26. Delaude, L., & Laszlo, P. (1996). A novel oxidizing reagent based on potassium ferrate(VI). The Journal of Organic Chemistry, 61(18), 6360-6370. 
    27. Dong, B., Zhang, M., Mu, H., & Su, X. (2016). Study on decoupling analysis between energy consumption and economic growth in liaoning province. Energy Policy, 97, 414-420.
    28. Dong, K., Dong, X., & Jiang, Q. (2020). How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels. The World Economic, 43(6), 1665-1698.
    29. Ember. (2023). Global Electricity Review 2023.
    30. Eneina, S.A.A.E., Shebla, A., & Dahabb, S.A.A.E. (2017). Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Applied Clay Science, 146, 343-349.
    31. Energy Education. (2023). Sulfur oxides. https://reurl.cc/edMz47.
    32. European Environment Agency, EEA. (2023). Sulphur oxides (SOx), EPER Chemicals glossary, https://reurl.cc/kanOYq.
    33. European Parliament. (2023). Circular economy: definition, importance and benefits. https://reurl.cc/gaeDqL.
    34. Fantasse, A., Lakhal, E.K., Idlimam, A., & Berroug, F. (2021). Energy efficiency of drying kinetics process of hydroxide sludge wastes in an indirect convection solar dryer. Journal of Solar Energy Engineering, 143(4).
    35. Fihri, A., Mahfouz, R., Shahrani, A., Taie, I., & Alabedi, G. (2016). Pervaporative desulfurization of gasoline: a review. Chemical Engineering and Processing: Process Intensification, 107, 94-105.
    36. Geissdoerfer, M., Savaget, P., Bocken, N.M.P., Hultink, E.J. (2017). The circular economy – a new sustainability paradigm?. Journal of Cleaner Production, 143, 757-768.
    37. Ghernaout, D., Naceur, M.W., (2011). Ferrate (VI): in situ generation and water treatment – a review. Desalination and Water Treatment, 30(1-3), 1-14.
    38. Gonzáleza, K.B., Pachecoa, E., Guzmánb, A., Pereirac, Y.A., Cuadrod, H.C., & Valenciae, J.A.F. (2021). Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, 23, 100930.
    39. Gupta, N., Roychoudhury, P.K., & Deb, J.K. (2005). Biotechnology of desulfurization of diesel: prospects and challenges. Applied Microbiology and Biotechnology, 66, 356-366.
    40. Haboc, M.M., Dugos, N.P., Choi, A.E.S., & Wan, M.W. (2024). Enhancing oxidative desulfurization using sludge-derived ferrate (VI) for dibenzothiophene: an optimization study. Journal of Cleaner Production, 470(10), 143307.
    41. Haruna, A., Merican, Z.M.A, & Musa, S.G. (2022). Recent advances in catalytic oxidative desulfurization of fuel oil – a review. Journal of Industrial and Engineering Chemistry, 112, 20-36.
    42. Herreno, L.C.F., Solano, D.M.V., Sarabia, K.D.R., Pérez, J.O.C., & Quintero, A.A.M. (2019). Drinking water treatment sludge as a partial substitute for clays in non-structural brick production. Journal of Physics: Conference Series, 1409.
    43. Hong, E., Yeneneh, A.M., Sen, T.K., Ang, H.M., & Kayaalp, A. (2018). A comprehensive review on rheological studies of sludge from various sections of municipal wastewater treatment plants for enhancement of process performance. Advances in Colloid and Interface Science, 257, 19-30.
    44. Hoppe, M.L., Schlemper, E.O., & Murmann, R.K. (1982). Structure of dipotassium ferrate (VI). Acta Cryst, B38, 2237-2239. 
    45. Hossain, M.R., Singh, S., Sharma, G.D., Apostu, S.A., & Bansal, P. (2023). Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA. Energy Policy, 174.
    46. Intergovernmental Panel on Climate Change, IPCC. (2025). https://www.ipcc.ch/.
    47. Intergovernmental Panel on Climate Change, IPCC. (2014). AR5 Synthesis Report: Climate Change 2014. https://reurl.cc/z6pA36.
    48. Intergovernmental Panel on Climate Change, IPCC. (2021). SYNTHESIS REPORT OF THE IPCC SIXTH ASSESSMENT REPORT (AR6).
    49. International Energy Agency, IEA. (2023). Net Zero Roadmap- A Global Pathway to Keep the 1.5 °C Goal in Reach, 2023 Update – Executive summary.
    50. International Organization for Standardization, ISO. (2006). 14040: Environmental management - Life cycle assessment - Principles and framework.
    51. International Organization for Standardization, ISO. (1999). 14041: Environmental management - Life cycle assessment - Goal and scope definition and inventory analysis.
    52. International Organization for Standardization, ISO. (2000). 14042: Environmental management - Life cycle assessment - Life cycle impact assessment.
    53. International Organization for Standardization, ISO. (2000). 14043: Environmental management - Life cycle assessment - Life cycle interpretation.
    54. International Renewable Energy Agency, IRENA. (2022). World Energy Transitions Outlook 2022.
    55. International Renewable Energy Agency, IRENA. (2023). World Energy Transitions Outlook 2023. 
    56. Intergovernmental Panel on Climate Change, IPCC. (2021). The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity, chapter 7 table 7.15, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf.
    57. International Organization for Standardization, ISO. (2018a). ISO 14064-1:2018 Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals.
    58. International Organization for Standardization, ISO. (2019a). ISO 14064-2:2019 Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements.
    59. International Organization for Standardization, ISO. (2019b). ISO 14064-3:2019 Part 3: Specification with guidance for the verification and validation of greenhouse gas statements.
    60. International Organization for Standardization, ISO. (2018b). ISO 14067:2018 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification.
    61. Ja’fari, M., Ebrahimi, S.L., & Khosravi-Nikou, M.R. (2018). Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: a critical review. Ultrasonics Sonochemistry, 40(A), 955-968.
    62. Jahn, S.A.A. (2001). Drinking water from Chinese rivers: challenges of clarification. Journal of Water Supply: Research and Technology-Aqua, 50(1), 15-27.
    63. Jiang, J.Q., Lloyd, B., & Grigore, L. (2004). Preparation and evaluation of potassium ferrate as an oxidant and coagulant for potable water treatment. Environmental Engineering Science, 18(5), 323-328. 
    64. Jiang, J.Q., Stanford, C., & Petri, M. (2018). Practical application of ferrate (VI) for water and wastewater treatment – Site study’s approach. Water-Energy Nexus, 1, 42-46.
    65. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: a new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324-330.
    66. Kelessidis, A., & Stasinakis, A.S. (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 32(6), 1186-1195.
    67. Laredo, G.C., Vega-Merino, P.M., Trejo-Z´arraga, F., & Castillo, J. (2013). Denitrogenation of middle distillates using adsorbent materials towards ULSD production: a review. Fuel Processing Technology, 106, 21-32.
    68. Lema, J.M., & Suarez, S. (2017). Innovative wastewater treatment & resource recovery technologies: impacts on energy, Economy and Environment. IWA Publishing; London, UK, https://reurl.cc/1GX5qX.
    69. Li, C., Li, X.Z., & Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate. Chemosphere, 61, 537-543.
    70. Li, D., Zhuge, Y., Liu, Y., Pham, P.N., Zhang, C., Duan, W., & Ma, X. (2021). Reuse of drinking water treatment sludge in mortar as substitutions of both fly ash and sand based on two treatment methods. Construction and Building Materials, 277, 122330.
    71. Licht, S., Wang, B., & Ghosh, S. (1999). Energetic iron (VI) chemistry: the super-iron battery. American Association for the Advancement of Science, 1039-1042. 
    72. Liu, J.-X., Liu, X.-Q., Yan, R.-X., Jia, L.-F., Cheng, H.-F., Liu, H., Huang, Y., Hua, M.-Q., Li, H.-M., & Zhu, W.-S. (2023). Active phase morphology engineering of NiMo/Al2O3 through La introduction for boosting hydrodesulfurization of 4,6-DMDBT. Petroleum Science, 20(2), 1231-1237.
    73. Liu, S., Wang, B., Cui, B., & Sun, L. (2008). Deep desulfurization of diesel oil oxidized by Fe (VI) systems. Fuel, 87(3), 422-428.
    74. M´acov´a, Z., Bouzek, K., Híveˇs, J., Sharma, V.K., Terryn, R.J., & Baum, J.C. (2009). Research progress in the electrochemical synthesis of ferrate (VI). Electrochimica Acta, 54(10), 2673-2683.
    75. Malani, R.S., Batghare, A.H., Bhasarkar, J.B., & Moholkar, V.S. (2021). Kinetic modelling and process engineering aspects of biodesulfurization of liquid fuels: review and analysis. Bioresource Technology Reports, 14, 100668.
    76. Maroušek, J., Stehel, V., Vochozka, M., Kolář, L., Maroušková, A., Strunecký, O., Peterka, J., Kopecký, M., & Shreedhar, S. (2019). Ferrous sludge from water clarification: changes in waste management practices advisable. Journal of Cleaner Production, 218, 459-464.
    77. Mega, D., Aryan, V., & Blomer, J. (2023). A comparative life cycle assessment of tyre recycling using pyrolysis compared to conventional end-of-life pathways. Resources, Conservation & Recycling, 199, 107255.
    78. Mei, J.L., Shi, Y., Xiao, C.K., Wang, A.C., Duan, A.J., & Wang, X.L. (2022). Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4,6-DMDBT. Petroleum Science, 19(1), 375-386. 
    79. Miao, G., Dong, L., Ren, X.L., Yang, C., Li, Z., & Xiao, J. (2020). An overview on adsorptive desulfurization of fuels. Chemical Industry and Engineering Progress, 39(6), 2251-2261.
    80. Miltner, A., Wukovits, W., Pröll, T., & Friedl, A. (2010). Renewable hydrogen production: a technical evaluation based on process simulation. Journal of Cleaner Production, 18, S51-S62.
    81. Mochida, I., & Choi, K.-H. (2004). An overview of hydrodesulfurization and hydrodenitrogenation. Journal of the Japan Petroleum Institute, 47(3), 145-163.
    82. National Environmental Health Research Center, NEHRC. (2021). Sulfur dioxide. https://reurl.cc/nLmK78.
    83. Neveux, N., Aubertin, N., Gerardin, R., & Evrard, O. (1994). Stabilized ferrates (VI): Synthesis method and applications. Chemical Water and Wastewater Treatment III, 95-103.
    84. Nguyen, M.D., Thomas, M., Surapaneni, A., Moon, E.M., & Milne, N.A. (2022). Beneficial reuse of water treatment sludge in the context of circular economy. Environmental Technology & Innovation, 28, 102651.
    85. Norcross, B.E., Lewis, W.C., Gai, H., Noureldin, N.A., & Lee, D.G. (1997). The oxidation of secondary alcohols by potassium tetraoxoferrate(VI). Canadian journal of chemistry, 75(2), 129-139.
    86. Organization for Economic Cooperation and Development, OECD. (2011). Energy. OECD Green Growth Studies.
    87. Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., & Kabe, T. (2000). Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 14, 1232-1239. 
    88. Palmer, K., Burtraw, D., & Shih, J.S. (2007). The benefits and costs of reducing emissions from the electricity sector. Journal of Environmental Management, 83, 115-130.
    89. Pan, D.I., Jiang, W.T., Guo, R.T., Huang, Y., & Pan, W.G. (2021). Thermogravimetric and kinetic analysis of co-combustion of waste tires and coal blends. ACS Omega, 6(8), 5479-5484.
    90. Pérez1, H., Pimentel, K., Meza, O.D., & Korner, M.H. (2017). Design and experimental test to ecological bricks based on organic and inorganic materials, Journal of Undergraduate Research, 3, 45-55.
    91. Pierre, F., Michael, O., Mattew, W.J., Robbie, M.A., Judithh, H., Peter, L., Corinne, L.Q., Hongmei, L., Ingrid, T.L., Are, O., Glen, P.P., Wouter, P., Julia, P., Clemens, S., Stephen, S., Josep, G.C., Philippe, C., Robert, B.J., Simone, R.A., Almut, A., … Zeng, J. (2025). Global carbon budget 2024. Earth System Science Data, 17, 965-1039.
    92. PRé. (2025). SimaPro database manual Methods library.
    93. PRé. (2023). SimaPro Database Manual Methods Library: Superseded method.
    94. Razali, M., Zhao, .Y.Q., & Bruen, M. (2007). Effectiveness of a drinking-water treatment sludge in removing different phosphorus species from aqueous solution. Separation and Purification Technology, 55(3), 300-306.
    95. Ruwona, W., Danha, G., & Muzenda, E. (2019). A review on material and energy recovery from waste tyres. Procedia Manufacturing, 35, 216-222.
    96. Saleh, T.A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry, 25, e00080. 
    97. Santo, A.F., Santo, C.P., Matos, A.M., Cardoso, O., & Quian, M.J. (2020). Effect of thermal drying and chemical treatments with wastes on microbiological contamination indicators in sewage sludge. Microorganisms, 8(3), 376.
    98. Scientific Applications International Corporation, SAIC. (2006). Life Cycle Assessment: Principles and Practice.
    99. Scientific Assessment of Ozone Depletion: 2014. (2015). Global Ozone Research and Monitoring Project - Report No. 55, ISBN 92-807-1722-7, Geneva.
    100. Seif, R., Salem, F.Z., & Allam, N.K. (2023). E‑waste recycled materials as efficient catalysts for renewable energy technologies and better environmental sustainability. Environment, Development and Sustainability.
    101. Sharma, V.K. (2002). Potassium ferrate (VI): an environmentally friendly oxidant. Advances in Environmental Research, 6(2), 143-156.
    102. Sharma, V.K., Burnett, C.R., O'Connor, D.B., & Cabelli, D. (2002). Iron (VI) and iron(V) oxidation of thiocyanate. Environmental Science & Technology, 36(19), 4182-4186.
    103. Sharma, V.K., Zboril, R., & Varma, R.S. (2015). Ferrates: greener oxidants with multimodal action in water treatment technologies. Accounts of Chemical Research, 48(2), 182-191.
    104. Sikarwar, P., Gosu, V., & Subbaramaiah, V. (2018). An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. Reviews in Chemical Engineering, 35(6).
    105. Solís, D., Agudo, A.L., Ramírez, J., Klimova, T. (2006). Hydrodesulfurization of hindered dibenzothiophenes on bifunctional NiMo catalysts supported on zeolite–alumina composites. Catalysis Today, 116(4), 469-477.
    106. Song, C., & Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 41, 207-238.
    107. Suna, X., Zhanga, Q., Lianga, H., Yinga, L., Xiangxua, M., & Sharma, V.K. (2016). Ferrate (VI) as a greener oxidant: Electrochemical generation and treatment of phenol. Journal of Hazardous Materials, 319, 130-36.
    108. Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E., & Ozbakkaloglu, T. (2019). Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production, 233, 753-764.
    109. Svinterikos, E., Zuburtikudis, I., & Al-Marzouqi, M. (2019). Carbon nanomaterials for the adsorptive desulfurization of Fuels. Journal of Nanotechnology.
    110. Szwarc, M., & Shaw, A. (1951). New derivative of dinaphthylethane. Journal of the American Chemical Society, 73(3), 1379.
    111. Talaiekhozani, A., Bagheri, M., Talaei, M.R ., & Jaafarzadeh, N. (2016). An overview on production and applications of ferrate (VI). Jundishapur Journal of Health Sciences, 8(3), e34904.
    112. Thompson, J.E., Ockerman, L.T., & Schreyer, J.M. (1951). Preparation and purification of potassium ferrate VI. Journal of the American Chemical Society, 73(3), 1379-1381.
    113. Tiwari, D., & Lee, S.M. (2011). Ferrate (VI) in the treatment of wastewaters: a new generation green chemical. ResearchGate, 241-276.
    114. Tsapin, A.I., Goldfeld, M.G., McDonald, G.D., & Nealson, K.H. (2000). Iron (VI): hypothetical candidate for the martian oxidant. Icarus, 147(1), 68-78.
    115. Twardowska, I., Schramm, K.W., & Berg, K. (2004). III.4-Sewage sludge. Waste Management Series, 4, 239-295. 
    116. United Nations Education Scientific and Cultural Organization, UNESCO. (2023). The United Nations World Water Development Report 2023: partnerships and cooperation for water; executive summary.
    117. United Nations, UN. (2023). COP26: Together for our planet. Climate Action. https://reurl.cc/5ODMjz.
    118. United Nations, UN. (2015). Sustainable Development Goals.
    119. Unites States Environmental Protection Agency, USEPA. (2023). Sulfur Dioxide Basics. Sulfur Dioxide (SO2) Pollution, https://reurl.cc/6QKv45.
    120. Unites States Environmental Protection Agency, USEPA. (2023). Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy. https://reurl.cc/ZyZWpa.
    121. University Corporation for Atmospheric Research, UCAR. (2020). Sulfur Oxides. Air Quality, https://reurl.cc/RyYqmr.
    122. Usman, K., Khan, S., Ghulam, S., Khan, M.U., Khan, N., Khan, M.A., & Khalil, S.K. (2012). Sewage sludge: an important biological resource for sustainable agriculture and its environmental implications. American Journal of Plant Sciences, 3(12), 2012.
    123. Verrelli, D.I. (2008). Drinking water treatment sludge production and dewaterability. National Library of Australia Cataloguing-in-Publication entry.
    124. Wang, M.C., Hull, J.Q., Jao, M., Dempsey, B.A., & Cornwell, D.A. (1992). Engineering behavior of water treatment sludge. Journal of Environmental Engineering, 118(6), 848-864.
    125. Weise, C.F., Falsig, H., Moses, P.G., Helveg, S., Brorson, M., Hansen, L.P. (2021). Single-atom Pt promotion of industrial Co-Mo-S catalysts for ultra-deep hydrodesulfurization. Journal of Catalysis, 403, 74-86. 
    126. Wisconsin Department of Health Services, WHS. (2022). Sulfur Dioxide. Environmental Health, https://reurl.cc/XmAGra.
    127. Wolf, S., Bullard, R., Buonocore, J.J., Donley, N., Farrelly, T., Fleming, J., Gonzalez, D.J.X., Oreskes, N., Ripple. W., Saha, R., & Wills, M.D. (2025). Scientists’ warning on fossil fuels. Oxford Open Climate Change, 5.
    128. Wu, Y., Du, H., Li, F., Su, H., Bhat, S.A., Hudori, H., Rosadi, M.Y., Arsyad, F., Lu, Y., & Wu, H. (2020). Effect of adding drinking water treatment sludge on excess activated sludge figestion process. Sustainability, 12(17), 6953.
    129. Xiao, T., Wang, H., Wang, X., Wu, H., Yuan, S., Dai, X., & Dong, B. (2023). New strategy of drinking water sludge as conditioner to enhance waste activated sludge dewaterability: collaborative disposal. Water Research, 233, 199761.
    130. Xie, S., Li, X., Pham, C.U., Nguyen, H.V., Song, Y., Chetty, K., Kulandaivelu, J., Wang, C., Hai, F., & Jiang, G. (2021). Co-digestion of primary sewage sludge with drinking water treatment sludge: a comprehensive evaluation of benefits. Bioresource Technology, 330, 124994.
    131. Yang, J., Ren, Y., Chen, S., Zhang, Z., Pang, H., & Wang, X. (2023). Thermally activated drinking water treatment sludge as a supplementary cementitious material: properties, pozzolanic activity and hydration characteristics. Construction and Building Materials, 365.
    132. Yu, J., Sumita., Zhang, K., Zhu, Q., Wu, C., Huang, S., Zhang, Y., Yao, S., & Pang, W. (2023). A review of research progress in the preparation and application of ferrate (VI). Water, 15, 699.
    133. Zannikos, F., Lois, E., & Stournas, S. (1995). Desulfurization of petroleum fractions by oxidation and solvent extraction. Fuel Processing Technology, 42(1), 35-45. 
    134. 行政院公報資訊網,2025,石油產品硫含量檢測方法—能量分散式 X 射線螢光光譜法(NIEA A443.75C)總說明,https://reurl.cc/layxXd。
    135. 行政院國家永續發展委員會,2025,臺灣2025淨零路徑推動歷程,https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050PathPlanning。
    136. 行政院環境部,2020a,空氣品質標準,https://reurl.cc/a4eqol。
    137. 行政院環境部,2020b,行政院公報,26(52),https://reurl.cc/9RDv2j。
    138. 行政院環境部,2024,溫室氣體排放量盤查作業指引113年版。
    139. 行政院環境部,2014,廢輪胎回收貯存清除處理方法及設施標準,https://reurl.cc/Ab2N2d。
    140. 行政院環境部,2025a,應回收廢棄物(廢輪胎類)回收量資料,https://reurl.cc/GK54bZ。
    141. 行政院環境部,2025b,各事業廢棄物代碼申報流向統計,https://reurl.cc/gnbQ37。
    142. 行政院環境部,2025c,產品碳足跡資訊網,https://cfp-calculate.tw/cfpc/WebPage/index.aspxyjo4c.4。
    143. 行政院環境部,2017,環境部(原環保署)說明國內廢輪胎處理情形,https://reurl.cc/ORrNz9。
    144. 林志彥,2004,以高鐵酸鉀(六價鐵)應用於腐植酸去除之研究,國立臺北科技大學,環境規劃與管理研究所,碩士學位論文。
    145. 國家發展委員會,2022,臺灣2050淨零路徑:臺灣總體減碳行動計畫。
    146. 經濟部工業局,2023,生命週期評估,https://reurl.cc/RyY7ED。
    147. 綠色和平組織(Greenpeace),2022,什麼是生命週期評估(LCA),https://reurl.cc/3eKAA9。
    148. 臺灣自來水公司,2021,飲水思源,https://reurl.cc/5OKOOz。
    149. 鄭秀娥、陳啟明,2009,淨水污泥之處置及再生利用探討,自來水公司。 
    150. 盧怡靜、呂穎彬,2013,ISO 14040 生命週期評估的下一步,永續論壇,第66期,29-35。
    151. 蕭名傑,2023,以淨水污泥製備高鐵酸鉀氧化二苯並噻吩試驗之研究,嘉南藥理大學,環境工程與科學系,碩士學位論文。
    152. 環拓科技股份有限公司,2025,碳定價趨勢與環拓的優勢,https://www.enrestec.com.tw/news/rcb/。
    153. 謝明憲,2020,廢輪胎熱裂解再生碳黑應用循環經濟,工業材料雜誌,399期。

    下載圖示
    校外:立即公開
    QR CODE