簡易檢索 / 詳目顯示

研究生: 蔡明倫
Tsai, Ming-Luen
論文名稱: 流動性瀝青混凝土(Guss)之工程性質
Engineering Properties of Guss Asphalt
指導教授: 陳建旭
Chen, Chien-Hsu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 195
中文關鍵詞: 疲勞裂縫車轍正交異向性鋼床鈑橋Guss流動性
外文關鍵詞: fatigue crack, Guss, orthotropic steel bridge deck, fluid property, rutting
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於高架、長跨度的橋梁而言,使用堅韌且輕質的正交異向性鋼床鈑橋(Orthotropic Steel Bridge Deck)設計,可以有效地承擔載重,並減少結構體之自重,且鋼床鈑具有施工快和精度容易掌控等優點。流動性瀝青混凝土(Guss)是具有充分變形迎合性、極佳耐龜裂、耐疲勞性及良好防水性的鋪面材料,於高溫拌合後的施工過程中富有流動性,因而於鋼床鈑上鋪築Guss即能充分與鋼床鈑完整結合,並能有效隔絕水對鋼床鈑的侵蝕。鋼床鈑勁度較低具有彈性,鋪設於鋼床鈑上的Guss受載容易引起反覆撓曲變形,可能會產生疲勞裂縫的問題,且Guss膠漿用量較高,其抵抗力大多依賴膠漿所提供的勁度,故拌合所導致老化的影響及高溫車轍問題對於Guss將格外重要。本研究進行Guss的配比設計,並於試驗室拌合模擬老化之Guss,進行Guss基本工程性質試驗以及應變控制疲勞試驗,以探討高溫車轍、定義疲勞壽命之結果。
    研究結果顯示,冷料斗和熱料斗取樣之粒料,會使得Guss配比設計有不同的結果;溫度及瀝青含量差異對於Guss的流動性敏感性相當高,瀝青含量的差異對Guss之貫入量及彎曲破斷應變的影響並不顯著,但對於動態穩定值(DS)則有相當大程度的影響;拌合過程所導致Guss的老化,會使得Guss抵抗車轍的能力增加,而超時拌合3小時的老化程度會較超溫拌合260℃的老化程度嚴重,過度老化的Guss會影響施工性,甚至可能導致Guss應有的品質和耐久性降低。由疲勞試驗可得知,試驗應變率愈大則Guss所表現出之勁度會愈強;於各種應變控制下,Guss之疲勞壽命都高於改質III及AC-20密級配,以同試驗環境為例,於試驗溫度25℃下,固定頻率10Hz,應變振幅667μ之疲勞試驗,Guss疲勞壽命約為改質III密級配的36倍,AC-20密級配的48倍;在定義疲勞壽命方面,應用傳統疲勞壽命、勁度變化曲線、消散能等定義,所得之疲勞壽命皆有一致性。

    For the roadway of long span bridges, stiffened and lightweight orthotropic steel bridge deck could effectively resist loading and reduce self-loading. Also, steel deck has advantage of rapid- practicing construction and easy-controlling accuracy and precision. Guss asphalt (Guss) has a great compatibility against deformation, an excellent fatigue crack resistance and a fine water-proof property. Guss possesses fluid property in high temperature mixing so that Guss could completely combine with steel deck and be impervious to water.
    Steel deck is a low stiffness and relatively flexible structure; therefore repetitive deflection causes fatigue crack of Guss on the steel deck. Guss has high percentage mastic content, so the resistant ability almost depends on stiffness of Guss mastic. It is important that influence of aging and rutting for Guss.
    In this research, mixing design of Guss, simulating aging effect of Guss, engineering and fatigue properties of Guss were conducted. This research mainly concerned issue of rutting in high temperature and fatigue life of decision for Guss.
    The results indicate that mixing design of Guss were different optimum mastic content by aggregate of cold and hot feed bins, mastic content had prominent influence on fluid property and dynamic stability of Guss, increased ability of resistance to rutting by aging effect, but quality and durability of Guss decreased with aging time increased.
    Furthermore, performed under same temperature, frequency and strain controlled loading condition, these results of fatigue test indicate that, fatigue life of Guss were longer than modified III type asphalt dense mixtures and AC-20 asphalt dense mixtures. Failure criteria included the use of traditional fatigue life, stiffness curve, and dissipated strain energy. These were used as the failure criterion.

    摘要.......................................................................................................I 目錄....................................................................................................VII 圖目錄...............................................................................................XIV 表目錄..............................................................................................XXII 第一章 緒論.......................................................................................1-1 1.1 前言.........................................................................................1-1 1.2 研究動機..................................................................................1-3 1.3 研究目的..................................................................................1-4 1.4 研究範圍..................................................................................1-5 第二章 文獻回顧...............................................................................2-1 2.1 源起.........................................................................................2-1 2.1.1 Guss組成與特性.................................................................2-2 2.1.1.1 Guss之粗粒料、細粒料及填充料..................................2-2 2.1.1.2 Guss之瀝青..................................................................2-3 2.1.1.3 千里達湖瀝青(Trinidad Lake Asphalt,TLA)................2-4 2.1.1.4 Guss規範......................................................................2-5 2.1.2 Guss的特性與優點.............................................................2-6 2.2 鋼床鈑及鋪面結構....................................................................2-7 2.2.1 鋼床鈑橋面上鋪面主要的應用問題.....................................2-9 2.2.2鋼床鈑橋面上瀝青鋪面的疲勞破壞與裂縫.........................2-12 2.2.3 鋼床鈑上瀝青鋪面的疲勞破壞與裂縫實驗........................2-12 2.2.4 鋼床鈑橋面上磨耗層主要的需求......................................2-14 2.3 Guss的施工注意事項..............................................................2-15 2.4 不同理論基礎之裂縫成長行為與試驗方法..............................2-16 2.4.1 動態力學分析(dynamic mechanical analysis,DMA)......2-16 2.4.2應變率單軸拉伸試驗.........................................................2-17 2.4.3 應力鬆弛試驗...................................................................2-19 2.4.4 應變控疲勞試驗...............................................................2-19 2.4.5應變控制之週期性載重試驗..............................................2-20 2.4.6 破壞能門檻值(fracture energy threshold).........................2-22 2.5 瀝青混凝土之疲勞裂成長模式................................................2-23 2.5.1 定義疲勞裂縫起始點........................................................2-23 2.5.2 定義疲勞壽命...................................................................2-23 2.5.3 應用消散能定義疲勞壽命.................................................2-25 2.6 載重、頻率與疲勞裂縫之相關性............................................2-25 2.6.1 載重對瀝青混凝土疲勞行為之影響...................................2-25 2.6.2 加載頻率對瀝青混凝土疲勞行為之影響...........................2-26 第三章 研究計畫...............................................................................3-1 3.1 研究方法..................................................................................3-1 3.2 試驗材料..................................................................................3-5 3.3 試驗設備與步驟.......................................................................3-6 3.3.1 試驗儀器:Guss瀝青攪拌機..............................................3-6 3.3.2 Guss拌合程序....................................................................3-7 3.3.3 Guss拌合後取樣與試驗方式.............................................3-10 3.3.3.1 Lueer流動性試驗........................................................3-10 3.3.3.2 貫入試驗....................................................................3-16 3.3.3.3彎曲試驗.....................................................................3-22 3.3.3.4 Guss輪跡試驗法.........................................................3-27 3.3.4 Guss之間接張力試驗........................................................3-30 3.3.5 模擬老化後Guss膠漿之分餾試驗.....................................3-30 3.3.6 模擬老化後Guss膠漿之黏度試驗.....................................3-31 3.3.7 疲勞試驗..........................................................................3-31 3.3.7.1 試驗儀器....................................................................3-31 3.3.7.2 Guss鬆弛模數試驗.....................................................3-33 3.3.7.3 Guss控制應變率試驗..................................................3-34 3.3.7.4應變振幅、載重頻率之疲勞試驗.................................3-34 第四章 試驗結果分析與討論.............................................................4-1 4.1 冷料斗取樣之Guss配比設計....................................................4-1 4.1.1使用材料.............................................................................4-1 4.1.2 冷料斗取樣之Guss設計級配..............................................4-5 4.1.3 試驗結果............................................................................4-6 4.1.3.1 Lueer流動性試驗..........................................................4-6 4.1.3.2 貫入量試驗..................................................................4-7 4.1.3.3 彎曲試驗......................................................................4-8 4.1.3.4 輪跡試驗......................................................................4-9 4.1.4. 建議瀝青含量..................................................................4-10 4.2 9.6%瀝青含量之廠拌結果.......................................................4-11 4.2.1 廠拌Guss之試驗結果.......................................................4-12 4.2.1.1 貫入試驗....................................................................4-12 4.2.1.2 彎曲試驗....................................................................4-13 4.2.1.3 輪跡試驗....................................................................4-14 4.2.2 實驗室拌合與廠拌Guss之差異.........................................4-16 4.2.2.1 熱料斗取樣之粒料試驗結果.......................................4-17 4.2.2.2 熱料斗取樣與冷料斗取樣粒料之級配差異..................4-19 4.2.2.3 掃瞄式電子顯微鏡(SEM)與比表面積.........................4-21 4.3 熱料斗取樣之Guss配比設計..................................................4-23 4.3.1 熱料斗取樣之Guss設計級配............................................4-23 4.3.2 試驗結果..........................................................................4-24 4.3.2.1 Lueer流動性試驗........................................................4-24 4.3.2.2 貫入試驗....................................................................4-26 4.3.2.3彎曲試驗.....................................................................4-28 4.3.2.4 輪跡試驗....................................................................4-30 4.4 8.5%瀝青含量之廠拌結果.......................................................4-31 4.4.1 廠拌Guss之試驗結果.......................................................4-32 4.4.1.1 貫入試驗....................................................................4-32 4.4.1.2 彎曲試驗結果.............................................................4-33 4.4.1.3 輪跡試驗結果.............................................................4-35 4.5 Guss之工程性質.....................................................................4-35 4.5.1 取樣時機對輪跡試驗的影響.............................................4-38 4.5.2 240℃的流動性對輪跡試驗DS值的影響............................4-41 4.5.3 Guss建議瀝青含量輪跡試驗結果......................................4-41 4.5.4 石粉對於輪跡試驗及貫入試驗的影響...............................4-43 4.5.5 Guss之彎曲試驗...............................................................4-46 4.5.6 間接張力試驗...................................................................4-49 4.6 模擬老化對Guss工程性質之影響...........................................4-49 4.6.1 模擬老化之膠漿...............................................................4-50 4.6.2 模擬老化對Guss流動性的影響.........................................4-52 4.6.3 模擬老化對貫入量的影響.................................................4-53 4.6.4 模擬老化對輪跡變形的影響.............................................4-57 4.6.5 模擬老化對彎曲變形的影響.............................................4-60 4.7 疲勞試驗................................................................................4-63 4.7.1 鬆弛模數試驗...................................................................4-63 4.7.2 控制應變率試驗...............................................................4-64 4.7.3應變振幅及載重頻率對Guss之疲勞壽命的影響................4-65 4.7.3.1 不同應變振幅對疲勞壽命的影響................................4-65 4.7.3.2 載重頻率對Guss疲勞壽命之影響...............................4-68 4.7.4 應變控制疲勞試驗下Guss之疲勞行為..............................4-69 4.7.4.1 勁度曲線(stiffness curve)...........................................4-69 4.7.4.1.1 Guss之疲勞行為...................................................4-71 4.7.4.1.2 應用勁度變化曲線定義疲勞起始點與疲勞壽命....4-74 4.7.4.2 應力-應變迴圈(stress-strain cycle)與消散能(dissipated energy)......................................................................4-77 4.7.4.3 應用消散能定義Guss之疲勞壽命...............................4-79 4.7.4.4累積消散能.................................................................4-80 4.7.4.5 能量比(energy ratio, R)..............................................4-82 4.7.4.6消散能比(dissipated energy ratio, DER).....................4-85 第五章 結論與建議............................................................................5-1 5.1 結論.........................................................................................5-1 5.2 建議.........................................................................................5-3 參考文獻..........................................................................................參-1

    中華鋪面工程學會 (2007)「台灣鋪面(Taipave)之設計與應用實務(五) - Guss瀝青混凝土」,桃園。
    林彥宇 (2004)「分析瀝青混凝土之裂縫生成與疲勞壽命」,國立成功大學土木工程所碩士論文,台南。
    夏明勝 (2001)「鋼床鈑鋪面 – Guss瀝青混凝土」,中國土木水利工程學刊,第28卷,第3期,第5-12頁。
    夏明勝 (2005)「分析瀝青混凝土之材料與疲勞特性」,國立成功大學土木工程所博士論文,台南。
    國道新建工程局 (2008)「國道六號C606 A標流動性瀝青混凝土(Guss)特定條款」,台北。
    陳建旭、黃建中 (2009)「流動性瀝青混凝土(Guss)之配比設計與鋪築」,臺灣公路工程,第35卷,第4期,第2-21頁。
    陳榮波 (1997)「斜張橋鋼床鈑特殊舖裝」,中華顧問工程,台北。
    張學鴻 (2005)「再生瀝青混凝土之性質評估」,國立成功大學土木工程所碩士論文,台南。
    Al-Khateeb, G., and Shenoy, A. (2004). “A disrinctive fatigue failure criterion,” Journal of Association of Asphalt Paving Technologists, Vol.73, pp.585-622.
    Arnaud, L., and Houel, A. (2006). “Fatigue Damage and Cracking of Asphalt Pavement on Orthotropic Steel Bridge Deck,” Transportation Research Board Annual Meeting, Washington, D.C. (CD-ROM).
    Chen, X., Huang, W., and Wang, J. (2004). “Permanent Deformation and Deformation Compliance of Guss-asphalt for Orthotropic Steel Deck Plate Surfacing,” Journal of Southeast University, Vol. 20, No. 3, pp.360-363.
    Ghuzlan, K.A. and Carpenter, S.H. (2000). “Energy-derived, Damage-based Failure Criterion for Fatigue Testing,” Transportation Research Record, No. 1723, pp.141-149, Transportation Research Board.
    Héritier, B., Olard, F., Loup, F., and Krafft, S. (2005) “Design of a Specific Bituminous Surfacing for the World’s Highest Orthotropic Steel Deck Bridge France’s Millau Viaduct,” Transportation Research Record, No.1929, pp.141–148, Transportation Research Board.
    Hicks, R.G., Dussek, I.J., and Seim, C. (2000). “Asphalt Surfaces on Steel Bridge Decks,” Transportation Research Record, No. 1740, pp.135-142, Transportation Research Board.
    Hopman, P.C., Kunst, P.A.J.C., and Pronk, A.C. (1989). “A Renewed Interpretation Method for Fatigue Measurements, Verificition of Miner’s Rule,” 4th Eurobitume Symposium in Madrid, Vol.1, pp.557-561.
    Hulsey, J.L., Yang, L., and Raad, L. (1999). “Wearing Surfaces for Orthotropic Steel Bridge Decks,” Transportation Research Record, No.1654, pp.141-150, Transportation Research Board.
    Kim, Y.R., Little, D.N., and Lytton, R.L. (2002). “Use of Dynamic Mechanical Analysis (DMA) to Evaluate the Fatigue and Healing Potential of Asphalt Binders in Sand Asphalt Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol.71, pp.176-206.
    Kim, Y.R., Little, D.N., and Lytton, R.L. (2003). “Fatigue and Healing Characterization of Asphalt Mixtures,” Journal of Materials in Civil Engineering, Vol.15, pp.75-83.
    Kutay, M.E., Gibson, N., and Youtcheft, J. (2008). “Conventional and Viscoelastic Continuum Damage (VECD) Based Fatigue Analysis of Polymer Modified Asphalt Pavements,” Journal of Association of Asphalt Paving Technologists, Vol.77, pp.395-434.
    LaForce, R. (2005). “I 70 Glenwood Canyon Overlay with Trinidad Lake Asphalt/Steel Slag Hot Mix Asphalt,” Colorado Department of Transportation, No.CDOT-DTD-R-2005-13 Final Report, Denver.
    Lee, S.H., Kim, W.S., and Kim, J.H. (2008). “10 Year History of Guss Asphalt Pavement Technology in Korea,” Proceedings of International Conference of Pavement Technology Sapporo, Japan, 6th ICPT, pp.643-650.
    Mangus, A.R. (2005). “A Fresh Look at Orthotropic Technology,” Public Roads, Vol.68, No.5, pp.1-15.
    Olard, F., Héritier, B., Loup, F., and Krafft, S. (2005). “New French Standard Test Method for the Design of Surfacing on Steel Deck Bridges,” Road Materials and Pavement Design, Vol.6, No.4, pp.515-531.
    Park, S. W., Kim, Y.R., and Schapery, R.A. (1996). “A Viscoelastic Continuum Damage Model and Its Application to Uniaxial Behavior of Asphalt Concrete,” Mechanics of Materials, Vol.24, pp.241-255.
    Pell, P.S., and Taylor, I.F. (1969). “Asphaltic Road Materials in Fatigue,” Proceeding of the Association of Asphalt Paving Technologists, Vol.38, pp577-593.
    Raithby, K.D., and Sterling, A.B. (1972). “Some Affect of Loading History on the Fatigue Performance of Rolled Asphalt,” Transport and Road Research Laboratory, No. LR 496, Crowthorne, Bershire, England.
    Rowe, G.M., (1993). “Perfomance of Asphalt Mixtures in the Trapezoidal Fatigue Test,” Journal of Association of Asphalt Paving Technologists, Vol.62, pp.344-384.
    Smith, J.W. (1987). “Asphalt Paving for Steel Bridge Decks,” Journal of Association of Asphalt Paving Technologists, Vol.56, pp.555-572.
    Tayebli, A.A., Rowe, G., and Sousa, J. (1992). “Fatigue Response of Asphalt-Aggregate Mixture,” Jounal of the Association of Asphalt Paving Technologists, Vol.61, pp.333-360.
    Zimmer, R.A., Choubane, B., and Holzschucher, C.R. (2003). “Friction Testing Method for Open-Grated Steel Bridge Decks,” Transportation Research Record, No.1860, pp.137-143, Transportation Research Board.

    下載圖示 校內:2012-07-20公開
    校外:2012-07-20公開
    QR CODE