| 研究生: |
林佳儀 Lin, Chia-Yi |
|---|---|
| 論文名稱: |
凝膠螢光搭配質譜偵測探討鍵擊化學於兒茶酚雌激素修飾蛋白之純化策略 Gel Fluorescence Coupled with Mass Spectrometry for Investigating Click Chemistry-based Affinity Enrichment Strategy for Catechol Estrogen-Modified Proteins |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 兒茶酚雌激素 、人類血清白蛋白 、組蛋白 、鍵擊化學 、螢光 |
| 外文關鍵詞: | Catechol Estrogen, Human Serum Albumin, Histone, Click Chemistry, Fluorescence |
| 相關次數: | 點閱:101 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
兒茶酚雌激素 (Catechol Estrogen, CE) 是雌激素的代謝物之一,其醌類 (Quinone) 化合物為具高活性的致癌物質。近期研究發現,雌激素於人類血清白蛋白上的修飾會影響其抗氧化及運輸物質的功能。而組蛋白轉譯後修飾會影響染色質的反應,包括轉錄、基因靜默及其穩定性,已有許多文獻指出組蛋白上的修飾失衡與疾病或癌症有所關聯,故透過研究兒茶酚雌激素修飾蛋白,可幫助我們了解疾病發生機制或開發生物指標。
透過螢光的測定,我們首次發現兒茶酚雌激素化蛋白在500 nm激發波長下具有紅螢光特性,並可藉由溶液及凝膠 (SDS-PAGE) 螢光來直接看出兒茶酚雌激素化蛋白的存在。而透過完整蛋白質譜分析,我們發現兒茶酚雌激素修飾在H1上的訊號,並計算兒茶酚雌激素在人類血清白蛋白與組蛋白上的修飾比例。在同濃度兒茶酚雌激素下組蛋白的凝膠螢光訊號雖然與人類血清白蛋白相像,但其兒茶酚雌激素修飾比例卻遠低於人類血清白蛋白。
另一方面,轉譯後修飾的鑑定常常會遇到一些困難,如樣品量不足、生物樣品的複雜性以及需高靈敏度的分析技術。為了克服這些困難,我們使用了富集策略、分離技術以及高解析度與靈敏度質譜儀,以提升轉譯後修飾鑑定的可能性。透過鍵擊化學親和性純化法將兒茶酚雌激素化人類血清白蛋白純化富集後,於凝膠上能看出明顯的螢光訊號。而在完整蛋白的質譜分析上,也成功看到兒茶酚雌激素化人類血清白蛋白被純化富集出的訊號,證實此鍵擊化學親和性純化富集方法確實可純化出兒茶酚雌激素化目標蛋白。此結果有助於對蛋白轉譯後修飾相關資訊的研究。唯兒茶酚雌激素化組蛋白的部分,雖然於凝膠上可看出強烈的螢光訊號,表示鍵擊化學親和性純化法確實能純化出兒茶酚雌激素化組蛋白,卻無法從質譜上看出其修飾訊號,在此推測為離子抑制造成的影響。
Catechol estrogen (CE) is one of the metabolites of estrogen, and its quinone forms are highly active carcinogens. Recent studies have found that the modification of estrogens on human serum albumin (HSA) affects its antioxidant and transportation functions. Post-translational modifications of histones can affect chromatin responses, including transcription, gene silencing and their stability. Much research has pointed out that the modification imbalance on histones is associated with diseases or cancers. Therefore, by studying CE-adducted proteins, we are able to further understand the mechanism of disease development and to develop biomarkers.
For the first time we found that the CE-adducted proteins have red fluorescence characteristics at the excitation wavelength of 500 nm, and the adducts can be directly identified by solution and gel (SDS-PAGE) exposed under UV. By intact protein analysis, the signal of CE modification on H1 was successfully identified, and the adduction ratio of CE on HSA and histone was calculated. We found that the fluorescence signal of histones on the gel exposed under UV was similar to that of HSA when both proteins were incubated with identical amount of CE, although the CE adduction ratio of histone is much lower than that of HSA.
On the other hand, identification of post-translational modifications (PTMs) often encounters difficulties such as insufficient sample size, complexity of biological samples, and analytical techniques requiring high sensitivity. To overcome these difficulties, enrichment strategies, separation techniques, and high-resolution and sensitive mass spectrometry were utilized to improve the identification of PTMs. After click chemistry-based affinity enrichment of CE-HSA adducts, the significant fluorescence signal of the adducts on the gel, as well as the signals of those on mass spectra, were successfully observed, confirming the feasibility of the enrichment strategy we developed. These results are helpful in our protein PTMs-related studies. However, even though the fluorescence of CE-histone adducts on the gel was clear and obvious, the signals of them on mass spectra were not the case, which we suspect was the result of ion suppression.
(1) Chen, G. G.; Zeng, Q.; Tse, G. M. Estrogen and its receptors in cancer. Med Res Rev 2008, 28 (6), 954-974.
(2) Manly, J. J.; Merchant, C. A.; Jacobs, D. M.; Small, S. A.; Bell, K.; Ferin, M.; Mayeux, R. Endogenous estrogen levels and Alzheimer's disease among postmenopausal women. Neurology 2000, 54 (4), 833-837.
(3) Carlsen, C. G.; Soerensen, T. H.; Eriksen, E. F. Prevalence of low serum estradiol levels in male osteoporosis. Osteoporos Int 2000, 11 (8), 697-701.
(4) Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; et al. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 2006, 1766 (1), 63-78.
(5) Liehr, J. G. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev 2000, 21 (1), 40-54.
(6) Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H. Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci 2015, 148 (2), 433-442.
(7) Ku, M. C.; Fang, C. M.; Cheng, J. T.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, C. C.; Tai, J. H.; Chen, S. H. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Sci Rep 2016, 6, 28804.
(8) Guizado, T. R. Analysis of the structure and dynamics of human serum albumin. J Mol Model 2014, 20 (10), 2450.
(9) Bode, A. M.; Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004, 4 (10), 793-805.
(10) Misra, A. Challenges in delivery of therapeutic genomics and proteomics; Elsevier 2010.
(11) Simon, M.; North, J. A.; Shimko, J. C.; Forties, R. A.; Ferdinand, M. B.; Manohar, M.; Zhang, M.; Fishel, R.; Ottesen, J. J.; Poirier, M. G. Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 2011, 108 (31), 12711-12716.
(12) Rothbart, S. B.; Strahl, B. D. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 2014, 1839 (8), 627-643.
(13) Bannister, A. J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell research 2011, 21 (3), 381-395.
(14) Sun, H.; Kennedy, P. J.; Nestler, E. J. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 2013, 38 (1), 124-137.
(15) Jensen, O. N. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2004, 8 (1), 33-41.
(16) Mann, M.; Jensen, O. N. Proteomic analysis of post-translational modifications. Nature biotechnology 2003, 21 (3), 255-261.
(17) Witze, E. S.; Old, W. M.; Resing, K. A.; Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nat Methods 2007, 4 (10), 798-806.
(18) Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012, 2012, 282574.
(19) Sobott, F.; Watt, S. J.; Smith, J.; Edelmann, M. J.; Kramer, H. B.; Kessler, B. M. Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J Am Soc Mass Spectrom 2009, 20 (9), 1652-1659.
(20) Chait, B. T. Mass spectrometry: bottom-up or top-down? Science 2006, 314 (5796), 65-66.
(21) Zhang, Y.; Fonslow, B. R.; Shan, B.; Baek, M. C.; Yates, J. R., 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013, 113 (4), 2343-2394.
(22) Schweizer, T.; Kubach, H.; Koch, T. Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems. Automotive and Engine Technology 2021, 6 (3), 275-287.
(23) Sudhir, P. R.; Chen, C. H. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology. Int J Mol Sci 2016, 17 (3), 432.
(24) Chen, X.; Wang, Y.; Ma, N.; Tian, J.; Shao, Y.; Zhu, B.; Wong, Y. K.; Liang, Z.; Zou, C.; Wang, J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther 2020, 5 (1), 72.
(25) Dalleau, S.; Baradat, M.; Guéraud, F.; Huc, L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 2013, 20 (12), 1615-1630.
(26) Hauck, A. K.; Zhou, T.; Hahn, W.; Petegrosso, R.; Kuang, R.; Chen, Y.; Bernlohr, D. A. Obesity-induced protein carbonylation in murine adipose tissue regulates the DNA-binding domain of nuclear zinc finger proteins. J Biol Chem 2018, 293 (35), 13464-13476.
(27) Fu, H.; Hu, J.; Zhang, M.; Wang, Y.; Zhang, H.; Hu, P. One-Step Preparation of Phenyl Boron-Modified Magnetic Mesoporous Silica for Selective Enrichment of cis-Diol-Containing Substances. Molecules 2018, 23 (3).
(28) Sibbersen, C.; Lykke, L.; Gregersen, N.; Jørgensen, K. A.; Johannsen, M. A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins. Chem Commun (Camb) 2014, 50 (81), 12098-12100.
(29) Go, E. P.; Uritboonthai, W.; Apon, J. V.; Trauger, S. A.; Nordstrom, A.; O'Maille, G.; Brittain, S. M.; Peters, E. C.; Siuzdak, G. Selective metabolite and peptide capture/mass detection using fluorous affinity tags. J Proteome Res 2007, 6 (4), 1492-1499.
(30) Verhelst, S. H.; Bogyo, M. Chemical proteomics applied to target identification and drug discovery. Biotechniques 2005, 38 (2), 175-177.
(31) Wang, Q.; Guan, J.; Wan, J.; Li, Z. Disulfide based prodrugs for cancer therapy. RSC Adv 2020, 10 (41), 24397-24409.
(32) Ponziani, S.; Di Vittorio, G.; Pitari, G.; Cimini, A. M.; Ardini, M.; Gentile, R.; Iacobelli, S.; Sala, G.; Capone, E.; Flavell, D. J.; et al. Antibody-Drug Conjugates: The New Frontier of Chemotherapy. Int J Mol Sci 2020, 21 (15).
(33) Shim, H. Bispecific Antibodies and Antibody-Drug Conjugates for Cancer Therapy: Technological Considerations. Biomolecules 2020, 10 (3).
(34) Jain, N.; Smith, S. W.; Ghone, S.; Tomczuk, B. Current ADC linker chemistry. Pharmaceutical research 2015, 32 (11), 3526-3540.
(35) Do, Q.T., et al., Identification of Cytosolic Protein Targets of Catechol Estrogens in Breast Cancer Cells Using a Click Chemistry-Based Workflow. J Proteome Res 2021, 20(1): p. 624-633.
(36) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl 2001, 40 (11), 2004-2021.
(37) Hein, J. E.; Fokin, V. V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem Soc Rev 2010, 39 (4), 1302-1315.
(38) Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Domingo, L. R.; Stiriba, S. E. Understanding the mechanism and regioselectivity of the copper(i) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Adv 2018, 8 (14), 7670-7678.
(39) Kennedy, D. C.; McKay, C. S.; Legault, M. C.; Danielson, D. C.; Blake, J. A.; Pegoraro, A. F.; Stolow, A.; Mester, Z.; Pezacki, J. P. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J Am Chem Soc 2011, 133 (44), 17993-18001.
(40) Yang, M.; Jalloh, A. S.; Wei, W.; Zhao, J.; Wu, P.; Chen, P. R. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli. Nat Commun 2014, 5, 4981.
(41) Chen, X.; Wu, Y.-W. Selective chemical labeling of proteins. Organic & biomolecular chemistry 2016, 14 (24), 5417-5439.
(42) Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discov Today 2003, 8 (24), 1128-1137.
(43) Hong, V.; Steinmetz, N. F.; Manchester, M.; Finn, M. G. Labeling live cells by copper-catalyzed alkyne--azide click chemistry. Bioconjug Chem 2010, 21 (10), 1912-1916.
(44) Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl 2009, 48 (52), 9879-9883.
(45) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 2007, 104 (43), 16793-16797.
(46) Speers, A. E.; Adam, G. C.; Cravatt, B. F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 2003, 125 (16), 4686-4687.
(47) Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 2008, 28 (2), 278-308.
(48) Hein, C. D.; Liu, X. M.; Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res 2008, 25 (10), 2216-2230.
(49) Weber, P. C.; Ohlendorf, D. H.; Wendoloski, J.; Salemme, F. Structural origins of high-affinity biotin binding to streptavidin. Science 1989, 243 (4887), 85-88.
(50) Hutchens, T.; Porath, J. Protein recognition of immobilized ligands: promotion of selective adsorption. Clinical chemistry 1987, 33 (9), 1502-1508.
(51) Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlén, M. The biotin‐streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26 (3), 501-510.
(52) Elliott, M. H.; Smith, D. S.; Parker, C. E.; Borchers, C. Current trends in quantitative proteomics. Journal of Mass Spectrometry 2009, 44 (12), 1637-1660.
(53) Handwerger, R. G.; Diamond, S. L. Biotinylated photocleavable polyethylenimine: Capture and triggered release of nucleic acids from solid supports. Bioconjugate chemistry 2007, 18 (3), 717-723.
(54) Yang, J.; Gupta, V.; Tallman, K. A.; Porter, N. A.; Carroll, K. S.; Liebler, D. C. Global, in situ, site-specific analysis of protein S-sulfenylation. Nature protocols 2015, 10 (7), 1022-1037.
(55) Liang, H. C.; Liu, Y. C.; Chen, H.; Ku, M. C.; Do, Q. T.; Wang, C. Y.; Tzeng, S. F.; Chen, S. H. In Situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens. J Proteome Res 2018, 17 (8), 2590-2599.
(56) Nessen, M. A.; Kramer, G.; Back, J.; Baskin, J. M.; Smeenk, L. E.; de Koning, L. J.; van Maarseveen, J. H.; de Jong, L.; Bertozzi, C. R.; Hiemstra, H. Selective enrichment of azide-containing peptides from complex mixtures. Journal of proteome research 2009, 8 (7), 3702-3711.
(57) Yang, Y.-Y.; Grammel, M.; Raghavan, A. S.; Charron, G.; Hang, H. C. Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics. Chemistry & biology 2010, 17 (11), 1212-1222.
(58) Bak, D. W.; Pizzagalli, M. D.; Weerapana, E. Identifying functional cysteine residues in the mitochondria. ACS chemical biology 2017, 12 (4), 947-957.
(59) Bar-Or, D.; Heyborne, K. D.; Bar-Or, R.; Rael, L. T.; Winkler, J. V.; Navot, D. Cysteinylation of maternal plasma albumin and its association with intrauterine growth restriction. Prenat Diagn 2005, 25 (3), 245-249.
(60) Sang, H.; Lu, G.; Liu, Y.; Hu, Q.; Xing, W.; Cui, D.; Zhou, F.; Zhang, J.; Hao, H.; Wang, G.; et al. Conjugation site analysis of antibody-drug-conjugates (ADCs) by signature ion fingerprinting and normalized area quantitation approach using nano-liquid chromatography coupled to high resolution mass spectrometry. Anal Chim Acta 2017, 955, 67-78.
(61) Su, X.; Jacob, N. K.; Amunugama, R.; Lucas, D. M.; Knapp, A. R.; Ren, C.; Davis, M. E.; Marcucci, G.; Parthun, M. R.; Byrd, J. C.; et al. Liquid chromatography mass spectrometry profiling of histones. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 850 (1-2), 440-454.