| 研究生: |
曾淳偉 Tseng, Chun-wei |
|---|---|
| 論文名稱: |
白蝦免疫基因Toll受器在抵抗Vibrio harveyi感染之防禦角色 RNAi knockdown of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi |
| 指導教授: |
楊惠郎
Yang, Huey-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 白蝦 、先天性免疫 、哈威弧菌 、LvToll 、細菌清除能力 |
| 外文關鍵詞: | Vibrio harveyi, Litopenaeus vannamei, LvToll, innate immune system, bacterial clearance |
| 相關次數: | 點閱:119 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝦類養殖係為台灣傳統產業之一,並富有高度經濟價值。但由於
過度發展而不時有蝦類相關的疾病爆發,因此如何維繫養蝦業的發展
和永續性經營,除了養殖生物安全性應高度要求外,蝦體優質健康狀
態之維持亦為重點之一,因而深入了解其免疫作用之調控為目前重要
研究方向之一。
當蝦體遭受到細菌、病毒、真菌、寄生蟲感染或者遭受緊迫的情
況下,會產生自體免疫反應。哈威弧菌(Vibrio harveyi)為蝦類主要細
菌性病原體,其被證實在蝦類養殖過程當中,可造成嚴重感染狀況,
導致造成嚴重經濟損失。有鑑於免疫系統於抵抗病原入侵所扮演的防
禦機制,因此本研究則針對於哈威弧菌感染之免疫機制進行探討。本
研究方法目的即為利用quantitative real-time PCR 分析白蝦免疫相關
基因表現量的方式,以探討白蝦在遭受哈威弧菌感染後,其免疫系統
調控機制。本研究中所觀測之白蝦免疫系統的相關基因涵蓋了蝦類數
個免疫路徑,受檢體如下- 1. proPO 活化系統: Serine protease
(SerP)、proPO 。2.凝結系統: Transglutaminase (TGase)、clotting
protein (CP)。3. 抗菌胜肽系統Anti-LPS factor (ALF)、Lysozyme
(Lyz)、Penaeidin2 (PEN2)、Penaeidin3 (PEN3)、Penaeidin4 (PEN4)、
Crustin 。4. 抗氧化防禦系統: Superoxidase dismutase (SOD) 、
Glutathione peroxidase (GPx)。5. Pattern recognition receptor: Toll
receptor (LvToll)。
由目前實驗結果得知,白蝦免疫基因如LvToll、TGase、SOD、
proPO、Lyz、Crustin、ALF、PEN3、PEN4 等,在遭受哈威弧菌Vibrio
harveyi 感染後24 及36 小時,免疫基因表現量變化皆與控制組有顯
著差異,其中LvToll、Pen4 的表現量則達10~20 倍之差異性。
有鑑於Toll receptor 參與了無脊椎動物 (如:果蠅、蚊子…等)
對革蘭式陰性菌之免疫反應,因此本研究則進一步以蝦體內基因沉默
模式進行其於遭受哈威弧菌感染中扮演之角色分析。由實驗結果證
實,在Toll 基因沉默化後,白蝦對於哈威弧菌的感受性上升,除了在
感染後細菌清除能力下降之外,亦造成感染後死亡率有明顯上升的趨
勢,因而了解LvToll 於白蝦防禦系統當中,確實參與了革蘭式陰性菌
的免疫反應。
In this study, we used real-time PCR to simultaneously monitor the responses of 13
key genes of the shrimp innate immune system in Litopenaeus vannamei after
challenge with Vibrio harveyi. In the proPO activating system, we found that proPO
was upregulated (3.3 at 36 hpi) even though serine protease (SerP) was not. The
hemolymph cloting genes transglutaminae (TGase) and clotting protein were also
upregulated, as were 5 genes in antimicrobial peptide system (ALF, Crustin, Lyz, PEN
2 and PEN 4), with only PEN 3 showing no significant changes. In the antioxidant
defense system, SOD was slightly elevated while GPx was substantially
down-regulated. By contrast, in the pattern recognition receptor system, the Toll
gene (LvToll) showed both the highest (15.17 ) increases in expression levels t 24 hpi,
and this gene was therefore studied in more detail. When LvToll was knocked down
by RNAi silencing, there was no effect on either survival rates or bacterial number in
unchallenged shrimp. There was also no difference in mortality rates between control
shrimp and LvToll-silenced shrimp when these two groups were challenged with a
viral pathogen (white spot syndrome virus; WSSV). However, when LvToll -silenced
shrimp were challenged by Vibrio harveyi, there was a significant increase in
mortality and bacterial CFU counts. We note that the increase in bacterial CFU count
occurred even though treatment with EGFP dsRNA had the opposite effect of
reducing the CFU counts. We conclude that LvToll is an important factor in the
shrimp innate immune response to acute V. harveyi infection but not to WSSV.
[1] Pérez Farfante, I., Kensley, B. Penaeid and sergestoid shrimps and prawns of the
world: keys and diagnoses. Mémoires du Muséum National D’Histoire Naturelle,
Paris. 1997; 233 pp.
[2] Valles-Jimenez R, Cruz P, Perez-Enriquez R. Population genetic structure of
Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama:
microsatellite DNA variation. Mar Biotechnol (NY) 2004; 6: 475-84.
[3] Carlos G. Wurmann, Raul M. Madrid, Andre M. Brugger. Shrimp farming in Latin
America: Current status, opportunities, challenges and strategies for sustainable
development. Aquaculture Economics & Management 2004; 8: 117-141.
[4] Marcelo Araneda, Eduardo P. Pérez, Eucario Gasca-Leyva. White shrimp Penaeus
vannamei culture in freshwater at three densities: Condition state based on length
and weight. Aquaculture 2008; 283: 13-18.
[5] Lai CY, Cheng W, Kuo CM. Molecular cloning and characterization of
prophenoloxidase from haemocytes of the white shrimp, Litopenaeus vannamei.
Fish Shellfish Immunol 2005; 18: 417-430.
[6] Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP, Chan SM, Yu XQ, He
JG. A Toll receptor in shrimp. Mol Immunol 2007; 44: 1999–2008.
[7] Yu CI, Song YL. Outbreaks of Taura Syndrome in Pacific White Shrimp Penaeus
vannamei Cultured in Taiwan. Fish Pathology 2000; 35: 21-24.
[8] Lightner DV, Redman RM, Poulos BT, Nunan LM, Mari JL, Hasson KW. Risk of
spread of penaeid shrimp viruses in the Americas by the international movement
of live and frozen shrimp. Rev Sci Tech Off Int Epiz 1997; 16: 146-160.
[9] Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB,
Nauwynck HJ. A review on the morphology, molecular characterization,
morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis 2008;
31: 1-18.
[10] Hasson KW, Lightner DV, Poulos BT, Redman RM, White BL, Brock JA,
31
Bonami JR. Taura syndrome in Penaeus vannamei: demonstration of a viral
etiology. Dis Aquat Org 1995; 23: 115–126.
[11] Dhar AK, Cowley JA, Hasson KW, Walker PJ. Genomic organization, biology,
and diagnosis of Taura syndrome virus and yellowhead virus of penaeid shrimp.
Adv Virus Res 2004; 63: 353-421.
[12] Austin B, Zhang XH. Vibrio harveyi: a significant pathogen of marine vertebrates
and invertebrates. Lett Appl Microbiol 2006; 43: 119-124.
[13] Li CC, Yeh ST, Chen JC. The immune response of white shrimp Litopenaeus
vannamei following Vibrio alginolyticus injection. Fish Shellfish Immunol 2008;
25: 853-860.
[14] Lightner, D.V. Hepatopancreatic parvo-like virus (HPV) disease of penaeid
shrimp. In: C.J. Sindermann and D.V. Lightner (eds.). Disease Diagnosis and
Control in North American Aquaculture. Developments in Aquaculture and
Fisheries Science 17 1988; Elsevier, Amsterdam, p. 30-32.
[15] D. Saulnier, P. Haffner, C. Goarant, P. Levy and D. Ansquer. Experimental
infection models for shrimp vibriosis studies: a review. Aquaculture 2000; 191:
133-144.
[16] Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev
2004; 68: 403-431.
[17] Lin X, Söderhäll K, Söderhäll I. Transglutaminase activity in the hematopoietic
tissue of a crustacean, Pacifastacus leniusculus, importance in hemocyte
homeostasis. BMC Immunol 2008; 9: 58.
[18] Fagutao FF, Yasuike M, Caipang CM, Kondo H, Hirono I, Takahashi Y, Aoki T.
Gene expression profile of hemocytes of kuruma shrimp, Marsupenaeus
japonicus following peptidoglycan stimulation. Mar Biotechnol 2008; 10:
731-740.
[19] Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Söderhäll I, Söderhäll K.
Phenoloxidase is an important component of the defense against Aeromonas
hydrophila infection in a crustacean, Pacifastacus leniusculus. J Biol Chem 2007;
32
282: 33593-33598.
[20] Jiravanichpaisal P, Lee BL, Söderhäll K. Cell-mediated immunity in arthropods:
hematopoiesis, coagulation, melanization and opsonization. Immunobiology 2006;
211: 213-236.
[21] Cerenius L, Söderhäll K. The prophenoloxidase-activating system in
invertebrates. Immunol Rev 2004; 198: 116-126.
[22] Lee SY, Söderhäll K. Early events in crustacean innate immunity. Fish Shellfish
Immunol 2002; 12: 421-437.
[23] Martin GG and Graves BL. Fine structure and classification of shrimp hemocytes.
J Morphol 1985; 185: 339-348.
[24] Tsing A, Arcier J.-M, Brehelin M. Hemocytes of Penaeid and Palaemonid
shrimps: Morphology, cytochemistry, and hemograms. J Invertebr Pathol 1989;
53: 64–77.
[25] Dalmo RA, Bøgwald J. Beta-glucans as conductors of immune symphonies. Fish
Shellfish Immunol 2008; 25: 384-396.
[26] Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from
toll-like receptors. Science 2004; 304: 1014–1018.
[27] Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe
detection. Curr Opin Immunol 2002; 14: 103-110.
[28] Sugumaran, M. Comparative Biochemistry of Eumelanogenesis and the
Protective Roles of Phenoloxidase and Melanin in Insects. Pigment Cell Res 2002;
15: 2-9.
[29] Yang C, Zhang J, Li F, Ma H, Zhang Q, Jose Priya TA, Zhang X, Xiang J. A Toll
receptor from Chinese shrimp Fenneropenaeus chinensis is responsive to Vibrio
anguillarum infection. Fish Shellfish Immunol 2008; 24: 564-574.
[30] Arts JA, Cornelissen FH, Cijsouw T, Hermsen T, Savelkoul HF, Stet RJ.
Molecular cloning and expression of a Toll receptor in the giant tiger shrimp,
33
Penaeus monodon. Fish Shellfish Immunol 2007; 23: 504-513.
[31] Mekata T, Kono T, Yoshida T, Sakai M, Itami T. Identification of cDNA encoding
Toll receptor, MjToll gene from kuruma shrimp, Marsupenaeus japonicus. Fish
Shellfish Immunol 2008; 24: 122-133.
[32] Wang CH, L. C., Leu JH, Chou CM, Yeh PY, Chou HY, Tung MC, Chang CF, Su
MS, Kou GH. Purification and genomic analysis of baculovirus associated with
white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Organ 1995; 23:
239–242.
[33] Lo CF, Hsu HC, Tsai MF, Ho CH, Peng SE, Kou GH, Lightner DV. Specific
genomic DNA fragment analysis of different geographical clinical samples of
shrimp white spot syndrome virus. Dis Aquat Organ 1999; 35: 175-185.
[34] Wang HC, Wang HC, Kou GH, Lo CF, Huang WP. Identification of icp11, the
most highly expressed gene of shrimp white spot syndrome virus (WSSV). Dis
Aquat Organ 2007; 74: 179-189.
[35] Wang HC, Wang HC, Leu JH, Kou GH, Wang AH, Lo CF. Protein expression
profiling of the shrimp cellular response to white spot syndrome virus infection.
Dev Comp Immunol 2007; 31: 672-686.
[36] Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AH, Kou GH, Lo CF. Genomic
and proteomic analysis of thirty-nine structural proteins of shrimp white spot
syndrome virus. J Virol 2004; 78: 11360-11370.
[37] Tsai MF, Kou G.H. Liu HC, Liu KF, Chang CF, Peng SE, Hsu HC, Wang CH, Lo
CF. Long-term presence of white spot syndrome virus (WSSV) in a cultivated
shrimp population without disease outbreaks. Dis Aquat Org 1999; 38: 107-114.
[38] Maningas MB, Kondo H, Hirono I, Saito-Taki T, Aoki T. Essential function of
transglutaminase and clotting protein in shrimp immunity. Mol Immunol 2008;
45: 1269-1275.
[39] Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed
immune response in Drosophila is dependent on phagocytes. PLoS Pathog 2007;
3: 26.
34
[40] Müller U, Vogel P, Alber G, Schaub GA. The innate immune system of mammals
and insects. Contrib Microbiol 2008; 15: 21-44.
[41] Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. Strain-specific priming of
resistance in the red flour beetle, Tribolium castaneum. Proc Biol Sci 2009; 276:
145-151.
[42] Scherfer C, Tang H, Kambris Z, Lhocine N, Hashimoto C, Lemaitre B.
Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult
pigmentation. Dev Biol 2008; 323: 189-196.
[43] Gao H, Li F, Dong B, Zhang Q, Xiang J. Molecular cloning and characterisation
of prophenoloxidase (ProPO) cDNA from Fenneropenaeus chinensis and its
transcription injected by Vibrio anguillarum. Mol Biol Rep 2008; 36: 1159-1166.
[44] Amparyup P, Charoensapsri W, Tassanakajon A. Two prophenoloxidases are
important for the survival of Vibrio harveyi challenged shrimp Penaeus monodon.
Dev Comp Immunol 2009; 33: 247-256.
[45] Yeh MS, Lai CY, Liu CH, Kuo CM, Cheng W. A second proPO present in white
shrimp Litopenaeus vannamei and expression of the proPOs during a Vibrio
alginolyticus injection, molt stage, and oral sodium alginate ingestion. Fish
Shellfish Immunol 2009; 26: 49-55.
[46] Jiménez-Vega F, Vargas-Albores F, Söderhäll K. Characterisation of a serine
proteinase from Penaeus vannamei haemocytes. Fish Shellfish Immunol 2005; 18:
101-108.
[47] Yeh MS, Huang CJ, Leu JH, Lee YC, Tsai IH. Molecular cloning and
characterization of a hemolymph clottable protein from tiger shrimp (Penaeus
monodon). Eur J Biochem 1999; 266: 624-633.
[48] Liu YC, Li FH, Wang B, Dong B, Zhang QL, Luan W, Zhang XJ, Xiang JH. A
transglutaminase from Chinese shrimp (Fenneropenaeus chinensis), full-length
cDNA cloning, tissue localization and expression profile after challenge. Fish
Shellfish Immunol 2007; 22: 576-588.
[49] Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B.
35
Insights into the anti-microbial defense of marine invertebrates: the penaeid
shrimps and the oyster Crassostrea gigas. Immunol Rev 2004; 198: 149-168.
[50] Vargas-Albores F, Yepiz-Plascencia G, Jiménez-Vega F, Avila-Villa A. Structural
and functional differences of Litopenaeus vannamei crustins. Comp Biochem
Physiol B 2004; 138: 415–422.
[51] Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech
M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang
Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachère E. PenBase, the shrimp
antimicrobial peptide penaeidin database: sequence-based classification and
recommended nomenclature. Dev Comp Immunol 2006; 30:283-288.
[52] Okumura T. Effects of lipopolysaccharide on gene expression of antimicrobial
peptides (penaeidins and crustin), serine proteinase and prophenoloxidase in
haemocytes of the Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish
Immunol 2007; 22: 68-76.
[53] Iwanaga S. The molecular basis of innate immunity in the horseshoe crab. Curr
Opin Immunol 2002; 14: 87-95.
[54] Liu H, Jiravanichpaisal P, Söderhäll I, Cerenius L, Söderhäll K.
Antilipopolysaccharide factor interferes with white spot syndrome virus
replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. J Virol
2006; 80: 10365-10371.
[55] Tharntada S, Ponprateep S, Somboonwiwat K, Liu H, Söderhäll I, Söderhäll K,
Tassanakajon A. Role of antilipopolysaccharide factor from the black tiger shrimp,
Penaeus monodon, in protection from white spot syndrome virus infection. J Gen
Virol 2009; in press.
[56] Liu F, Liu Y, Li F, Dong B, Xiang J. Molecular cloning and expression profile of
putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus
chinensis). Mar Biotechnol 2005; 7: 600-608.
[57] Somboonwiwat K, Bachère E, Rimphanitchayakit V, Tassanakajon A.
Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black
tiger shrimp, Penaeus monodon, and characterization of its binding properties.
36
Dev Comp Immunol 2008; 32: 1170-1176.
[58] de la Vega E, O'Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, Warr
GW, Gross PS. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF):
a broad spectrum antimicrobial peptide essential for shrimp immunity against
bacterial and fungal infection. Mol Immunol 2008; 45: 1916-1925.
[59] Amparyup P, Kondo H, Hirono I, Aoki T, Tassanakajon A. Molecular cloning,
genomic organization and recombinant expression of a crustin-like antimicrobial
peptide from black tiger shrimp Penaeus monodon. Mol Immunol 2008; 45:
1085-1093.
[60] Shockey JE, O'Leary NA, de la Vega E, Browdy CL, Baatz JE, Gross PS. The
role of crustins in Litopenaeus vannamei in response to infection with shrimp
pathogens: An in vivo approach. Dev Comp Immunol 2009; 33: 668-673.
[61] Mai WJ, Hu CQ. Molecular cloning, characterization, expression and
antibacterial analysis of a lysozyme homologue from Fenneropenaeus
merguiensis. Mol Biol Rep 2008.
[62] Hikima S, Hikima J, Rojtinnakorn J, Hirono I, Aoki T. Characterization and
function of kuruma shrimp lysozyme possessing lytic activity against Vibrio
species. Gene 2003; 316: 187-195.
[63] Sotelo-Mundo RR, Islas-Osuna MA, de-la-Re-Vega E, Hernández-López J,
Vargas-Albores F, Yepiz-Plascencia G. cDNA cloning of the lysozyme of the
white shrimp Penaeus vannamei. Fish Shellfish Immunol 2003; 15: 325-331.
[64] Xing Y, Feng-Ying G, Qing-Mei Z, Jun-Jie B, Huan W, Hai-Hua L, Qing J.
Cloning and characterization of the tiger shrimp lysozyme. Mol Biol Rep 2008.
[65] Simser JA, Mulenga A, Macaluso KR, Azad AF Immuneresponsive lysozymes
from hemocytes of the American dog tick, Dermacentor variabilis and an
embryonic cell line of the Rocky Mountain wood tick, D. andersoni. Insect
Biochem Mol Biol 2004; 34: 1235–1246.
[66] Burge EJ, Madigan DJ, Burnett LE, Burnett KG. Lysozyme gene expression by
hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with
37
Vibrio. Fish Shellfish Immunol 2007; 22: 327-339.
[67] Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech
M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang
Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachère E. PenBase, the shrimp
antimicrobial peptide penaeidin database: sequence-based classification and
recommended nomenclature. Dev Comp Immunol 2006; 30: 283-288.
[68] de Lorgeril J, Gueguen Y, Goarant C, Goyard E, Mugnier C, Fievet J, Piquemal
D, Bachère E. A relationship between antimicrobial peptide gene expression and
capacity of a selected shrimp line to survive a Vibrio infection. Mol Immunol
2008; 45: 3438-3445.
[69] Destoumieux D, Muñoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachère
E. Penaeidins, antimicrobial peptides with chitin-binding activity, are produced
and stored in shrimp granulocytes and released after microbial challenge. J Cell
Sci 2000; 113: 461-469.
[70] Liu CH, Tseng MC, Cheng W. Identification and cloning of the antioxidant
enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its
expression following Vibrio alginolyticus infection. Fish Shellfish Immunol 2007;
23: 34-45.
[71] Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H.
Oxidative stress in malaria parasite-infected erythrocytes: host-parasite
interactions. Int J Parasitol 2004; 34: 163-189.
[72] Park EM, Ramnath N, Yang GY, Ahn JY, Park Y, Lee TY, Shin HS, Yu J, Ip C,
Park YM. High superoxide dismutase and low glutathione peroxidase activities in
red blood cells predict susceptibility of lung cancer patients to radiation
pneumonitis. Free Radic Biol Med 2007; 42: 280-287.
[73] Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa
Snaar-Jagalska B, Spaink HP. Expression analysis of the Toll-like receptor and
TIR domain adaptor families of zebrafish. Mol Immunol 2004; 40: 773-783.
[74] Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila
immune response. BMB Rep 2008; 41: 267-277.
38
[75] Brennan C.A. and Anderson K.V. Drosophila: the genetics of innate immune
recognition and response. Annu Rev Immunol 2004; 22: 457-483.
[76] Cherry S, Silverman N. Host-pathogen interactions in drosophila: new tricks
from an old friend. Nat Immunol 2006; 7: 911-917.
[77] Kawai T, Akira S. TLR signaling. Cell Death Differ 2006; 13: 816-825.
[78] Zambon RA, Nandakumar M, Vakharia VN, Wu LP. The Toll pathway is
important for an antiviral response in Drosophila. Proc Natl Acad Sci 2005; 102:
7257-7262.