簡易檢索 / 詳目顯示

研究生: 洪瑋廷
Hung, Wei-Ting
論文名稱: 低壓氣相輔助溶液法合成多維度擬鹵素鈣鈦礦及其材料分析
Synthesis and Material characteristics of Multi-dimensional Pseudohalide perovskite by Low pressure Vapor-Assisted Solution Process
指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 二維三維混成鈣鈦礦擬鹵素低壓氣相輔助溶液製程
外文關鍵詞: pseudo-halide, thiocyanate, 2D/3D hybrid perovskite, low-pressure vapor-assisted solution process (LP-VASP)
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 ii 致謝 ix 目錄 x 表目錄 xv 第一章 緒論1 1.1 前言1 1.2 太陽能電池發展1 1.2.1 第一代太陽能電池2 1.2.2 第二代太陽能電池3 1.2.3 第三代太陽能電池3 1.3 太陽能電池基本原理5 1.3.1 太陽光譜與空氣質量5 1.3.2 Shockley Queisser理論5 1.3.3太陽能電池元件量測6 1.4研究動機9 第二章 文獻回顧10 2.1鈣鈦礦材料10 2.1.1三維鈣鈦礦材料10 2.1.2二維鈣鈦礦材料11 2.1.3多元混成鈣鈦礦17 2.2有機無機混成鈣鈦礦發展21 2.3氣相沉積鈣鈦礦26 2.3.1雙源共蒸鍍法26 2.3.2兩次沉積法29 2.3.3氣相輔助溶液法32 2.3.4低壓氣相輔助溶液法34 2.3.5氣溶膠輔助氣相沉積法36 2.4擬鹵素鈣鈦礦38 第三章 實驗方法與儀器分析46 3.1實驗儀器與藥品46 3.2實驗流程47 3.3鈣鈦礦材料製作48 3.3.1基板製備48 3.3.2鈣鈦礦前驅液製備48 3.3.3低壓氣相沉積製程鈣鈦礦薄膜48 3.4薄膜製程工作原理49 3.4.1真空加熱爐49 3.5樣品特性分析50 3.5.1吸收光譜量測(UV-VIS Spectrum)50 3.5.2光致螢光光譜量測 (Photoluminescene,PL)50 3.5.3 X光繞射儀 (X-ray Diffraction, XRD)51 3.5.4低掠角廣角X光散射儀 (Grazing-Incidence Wide-Angle X-ray Scattering, GIWAXS)51 3.5.5傅立葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy, FTIR)52 3.5.6掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)52 3.5.7 X光吸收近邊緣結構(Near-Edge X-ray Absorption Fine Structure, NEXAFS)53 3.5.8 二次離子質譜儀(Secondary Ion Mass Spectroscopy, SIMS)54 3.5.9 多光子激發掃描式顯微鏡(Multiphoton Excitation Microscope)54 第四章 結果與討論55 4.1 不同PEAI濃度的前驅液55 4.1.1 不同PEAI濃度的前驅液:螢光與吸收光譜55 4.1.2不同PEAI濃度的前驅液:XRD圖57 4.2不同反應溫度的鈣鈦礦58 4.2.1 不同反應溫度的鈣鈦礦:螢光與吸收光譜58 4.2.2 不同反應溫度的鈣鈦礦:XRD圖62 4.2.3 不同反應溫度的鈣鈦礦:GIWAXS圖64 4.2.4 不同反應溫度的鈣鈦礦:SEM-Top View圖66 4.2.5 不同反應溫度的鈣鈦礦:SEM-Cross Section圖68 4.2.6 不同反應溫度的鈣鈦礦: Multiphoton圖70 4.3經過低壓氣相反應後SCN是否存在鈣鈦礦內分析72 4.3.1經過低壓氣相反應後SCN是否存在鈣鈦礦內分析:FTIR圖譜72 4.3.2經過低壓氣相反應後SCN是否存在鈣鈦礦內分析: NEXAFS圖譜74 4.3.3經過低壓氣相反應後SCN是否存在鈣鈦礦內分析: SIMS圖譜76 4.4實驗機制77 4.4.1氣相反應前77 4.4.2氣相反應時79 第五章 結論與未來展望80 參考文獻81

    [1] A. E. Becquerel, "Memoire sur les effects d´electriques produits sous l´influence des rayons solaires," Annalen der Physick und Chemie, vol. 54, pp. 561-567, 1841.
    [2] C. E. Fritts, "On a new form of selenium photocell," American J. of Science, vol. 33, p.97, 1883.
    [3] F. C. Nix and A. W. Treptwo, "A thallous sulphide photo EMF cell," Journal Opt. Society of America, vol. 29, pp. 457-462, 1939.
    [4] R. S. Ohl, "Light-sensitive electric device," U.S. Patent, vol. 2, 1941.
    [5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
    [6] W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, and P. Altermatt, "20.8% PERC solar cell on 156 mm × 156 mm p-type multicrystalline silicon substrate," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3-9, 2015.
    [7] T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, and M. Kondo, "Development of highly stable and efficient amorphous silicon based solar cells," Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, pp. 2213 - 2217, 2013.
    [8] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, pp. 737-740, 1991.
    [9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [10] NREL, "Best research-cell efficiency chart, "https://www.nrel.gov/pv/cell-efficiency.html, 2021.
    [11] N. Koide, A. Islam, Y. Chiba, and L. Han, "Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit," Journal of Photochemistry and Photobiology A: Chemistry, vol. 182, no. 3, pp. 296-305, 2006.
    [12] G. Instruments, "DSSC: dye sensitized solar cells,"
    https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/.
    [13] A. E. Tutorials. "Solar cell I-V characteristic," http://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html.
    [14] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
    [15] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, "A layered hybrid perovskite solar-cell absorber with enhanced moisture stability," Angewandte Chemie International Edition, vol. 53, no. 42, pp. 11232-11235, 2014.
    [16] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and Edward H. Sargent, "Ligand-stabilized reduced-dimensionality perovskites," Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649-2655, 2016.
    [17] W. Peng, J. Yin, K.-T. Ho, O. Ouellette, M. D. Bastiani, B. Murali, O. E. Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J.-H. He, B. S. Ooi, O. F. Mohammed, E. Sargent, and O. M. Bakr, "Ultralow self-doping in two-dimensional hybrid perovskite single crystals," Nano Letters, vol. 17, no. 8, pp. 4759-4767, 2017.
    [18] H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, C. M. M. Soe, J. Yoo, J. Crochet, S. Tretiak, J. Even, A. Sadhanala, G. Azzellino, R. Brenes, P. M. Ajayan, V. Bulović, S. D. Stranks, R. H. Friend, M. G. Kanatzidis, and A. D. Mohite, "Stable light-emitting diodes using phase-pure ruddlesden–popper layered perovskites," Advanced Materials, vol. 30, no. 6, p. 1704217, 2018.
    [19] M. S. Abbas, S. Hussain, J. Zhang, B. Wang, C. Yang, Z. Wang, Z. Wei, and R. Ahmad, "Orientationally engineered 2D/3D perovskite for high efficiency solar cells," Sustainable Energy & Fuels, vol. 4, no. 1, pp. 324-330, 2020.
    [20] P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun, and L. Wang, "In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells," Advanced Functional Materials, vol. 28, no. 17, p. 1706923, 2018.
    [21] K. T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu, O. Almora, M. Tschumi, P. A. Schouwink, G. Seo, S. Heo, J. Park, J. Jang, S. Paek, G. Garcia-Belmonted, and M. K. Nazeeruddin, "Selective growth of layered perovskites for stable and efficient photovoltaics," Energy & Environmental Science, vol. 11, no. 4, pp. 952-959, 2018.
    [22] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, "Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting," Angewandte Chemie International Edition, vol. 53, no. 12, pp. 3151-3157, 2014.
    [23] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, vol. 9, no. 6, pp. 1989-1997, 2016.
    [24] E. A. Alharbi, T. P. Baumeler, A. Krishna, A. Y. Alyamani, F. T. Eickemeyer, O. Ouellette, L. Pan, F. S. Alghamdi, Z. Wang, M. H. Alotaibi, B. Yang, M. Almalki, M. D. Mensi, H. Albrithen, A. Albadri, A. Hagfeldt, S. M. Zakeeruddin, and M. Grätzel, "Formation of high-performance multi-cation halide perovskites photovoltaics by δ-CsPbI3/δ-RbPbI3 seed-assisted heterogeneous nucleation," Advanced Energy Materials, vol. 11, no. 16, p. 2003785, 2021.
    [25] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
    [26] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific Reports, vol. 2, no. 1, p. 591, 2012.
    [27] J. Burschka, N. Pellet, S.-J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, pp. 316-319, 2013.
    [28] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature Materials, vol. 13, no. 9, pp. 897-903, 2014.
    [29] P.-S. Shen, Y.-H. Chiang, M.-H. Li, T.-F. Guo, and P. Chen, "Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction," APL Materials, vol. 4, no. 9, p. 091509, 2016.
    [30] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013.
    [31] J. Li, H. Wang, X. Y. Chin, H. A. Dewi, K. Vergeer, T. W. Goh, J. W. M. Lim, J. H. Lew, K. P. Loh, C. Soci, T. C. Sum, H. J. Bolink, N. Mathews, S. Mhaisalkar, A. Bruno, "Highly efficient thermally co-evaporated perovskite solar cells and mini-modules," Joule, vol. 4, no. 5, pp. 1035-1053, 2020.
    [32] H.-Y. Lin, H.-Y. Lin, C.-Y. Chen, B.-W. Hsu, Y.-L. Cheng, W.-L. Tsai, Y.-C. Huang, C.-S. Tsao, H.-W. Lin, "Efficient cesium lead halide perovskite solar cells through alternative thousand-layer rapid deposition," Advanced Functional Materials, vol. 29, no. 44, p. 1905163, 2019.
    [33] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, and H.-W. Lin, "Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition," Advanced Materials, vol. 26, no. 38, pp. 6647-6652, 2014.
    [34] G. Balaji, P. H. Joshi, H. A. Abbas, L. Zhang, R. Kottokkaran, M. Samiee, M. Noack ,and V. L. Dalal, "CH3NH3PbI3 from non-iodide lead salts for perovskite solar cells via the formation of PbI2," Physical Chemistry Chemical Physics, vol. 17, no. 16, pp. 10369-10372, 2015.
    [35] D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, and C. Li, "Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition," Journal of Materials Chemistry A, vol. 3, no. 18, pp. 9401-9405, 2015.
    [36] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Zheng, R.-Wu, C.-Y. Chen, and H.-W. Lin, "Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum," Advanced Materials, vol. 28, no. 32, pp. 7013-7019, 2016.
    [37] C.-Y. Chen, H.-Y. Lin, K.-M. Chiang, W.-L. Tsai, Y.-C. Huang, C.-S. Tsao, H.-W. Lin, "All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%," Advanced Materials, vol. 29, no. 12, p. 1605290, 2017.
    [38] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
    [39] F. Hao, C. C. Stoumpos, Z. Liu, R. P. H. Chang, and M. G. Kanatzidis, "Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%," Journal of the American Chemical Society, vol. 136, no. 46, pp. 16411-16419, 2014.
    [40] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu, "A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J–V curves," Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12443-12451, 2015.
    [41] S. M. Jain, B. Philippe, E. M. J. Johansson, B.-W. Park, H. Rensmo, T. Edvinsson, and G. Boschloo, "Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase," Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2630-2642, 2016.
    [42] Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, "Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites," Chemistry of Materials, vol. 27, no. 13, pp. 4612-4619, 2015.
    [43] S. R. Raga, L. K. Ono, and Y. Qi, "Rapid perovskite formation by CH3NH2 gas-induced intercalation and reaction of PbI2," Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2494-2500, 2016.
    [44] P. Luo, Z. F. Liu, W. Xia, C. C. Yuan, J. G. Cheng, C. X. Xu, and Y. W. Lu,, "Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 45, pp. 22949-22959, 2015.
    [45] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, "High performance perovskite solar cells by hybrid chemical vapor deposition," Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014.
    [46] M. R. Leyden, M. V. Lee, S. R. Raga, and Y. Qi, "Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations," Journal of Materials Chemistry A, vol. 3, no. 31, pp. 16097-16103, 2015.
    [47] Y. Peng, G. Jing, and T. Cui, "A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12436-12442, 2015.
    [48] P.-S. Shen, J.-S. Chen, Y.-H. Chiang, M.-H. Li, T.-F. Guo, and P. Chen, "Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module," Advanced Materials Interfaces, vol. 3, no. 8, p. 1500849, 2016.
    [49] Y. Jiang, M. R. Leyden, L. Qiu, S. Wang, L. K. Ono, Z. Wu, E. J. J.-Perez, and Y. Qi, "Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability," Advanced Functional Materials, vol. 28, no. 1, p. 1703835, 2018.
    [50] L. Qiu, S. He, Y. Jiang, D.-Y. Son, L. K. Ono, Z. Liu, T. Kim, T. Bouloumis, S. Kazaoui, and Y. B. Qi, "Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency," Journal of Materials Chemistry A, vol. 7, no. 12, pp. 6920-6929, 2019.
    [51] M.-H. Li, H.-H. Yeh, Y. H. Chiang, U. Jeng, C.-J. Su, H.-W. Shiu, Y.-J. Hsu, N. Kosugi, T. Ohigashi, Y.-A. Chen, P.-S. Shen, P. Chen, and T.-F. Guo, "Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process," Advanced Materials, vol. 30, no. 30, p. 1801401, 2018.
    [52] P. Marchand, I. A. Hassan, I. P. Parkin, and C. J. Carmalt, "Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication," Dalton Transactions, vol. 42, no. 26, pp. 9406-9422, 2013.
    [53] S. Chen, J. Briscoe, Y. Shi, K. Chen, R. M. Wilson, S. Dunn, and R. Binions, "A simple, low-cost CVD route to high-quality CH3NH3PbI3 perovskite thin films," CrystEngComm, vol. 17, no. 39, pp. 7486-7489, 2015.
    [54] R. G. Palgrave and I. P. Parkin, "Aerosol assisted chemical vapor deposition using nanoparticle precursors:  a route to nanocomposite thin films," Journal of the American Chemical Society, vol. 128, no. 5, pp. 1587-1597, 2006.
    [55] D. J. Lewis and P. O'Brien, "Ambient pressure aerosol-assisted chemical vapour deposition of (CH3NH3)PbBr3, an inorganic–organic perovskite important in photovoltaics," Chemical Communications, vol. 50, no. 48, pp. 6319-6321, 2014.
    [56] D. S. Bhachu, D. O. Scanlon, E. J. Saban, H. Bronstein, I. P. Parkin, C. J. Carmalt, and R. G. Palgrave, "Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 9071-9073, 2015.
    [57] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties," Inorganic Chemistry, vol. 52, no. 15, pp. 9019-9038, 2013.
    [58] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, "Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, vol. 1, no. 18, pp. 5628-5641, 2013.
    [59] J.-P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, "Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement," Advanced Materials, vol. 28, no. 25, pp. 5031-5037, 2016.
    [60] Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, and T. Xu, "Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films," Angewandte Chemie International Edition, vol. 54, no. 26, pp. 7617-7620, 2015.
    [61] Y. Chen, B. Li, W. Huang, D. Gao, and Z. Liang, "Efficient and reproducible CH3NH3PbI3−x(SCN)x perovskite based planar solar cells," Chemical Communications, vol. 51, no. 60, pp. 11997-11999, 2015.
    [62] Y.-H. Chiang, H.-M. Cheng, M.-H. Li, T.-F. Guo, and P. Chen, "Low-pressure vapor-assisted solution process for thiocyanate-based pseudohalide perovskite solar cells," ChemSusChem, vol. 9, no. 18, pp. 2620-2627, 2016.
    [63] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, and F. Yan, "Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity," Nature Communications, vol. 7, no. 1, p. 11105, 2016.
    [64] C.-R. Ke, D. J. Lewis, A. S. Walton, Q. Chen, B. F. Spencer, M. Z. Mokhtar, C. L. Compean-Gonzalez, P. O’Brien, A. G. Thomas, and W. R. Flavell, "Air-stable methylammonium lead iodide perovskite thin films fabricated via aerosol-assisted chemical vapor deposition from a pseudohalide Pb(SCN)2 precursor," ACS Applied Energy Materials, vol. 2, no. 8, pp. 6012-6022, 2019.
    [65] H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, and M. Gratzel, "Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells," Science, vol. 370, no. 6512, p. eabb8985, 2020.
    [66] W.Kern, Thin Film Processes Ⅱ 1st Edition, ELSEVIER,1991.
    [67] D.-H. W., Y.-J. Hsu, "The principles and applications of full field X-ray
    photoemission electron m icroscopy," Instruments Today, vol. 26, 2005.

    無法下載圖示 校內:2026-08-03公開
    校外:2026-08-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE