| 研究生: |
謝方博 Hsieh, Fang-Bo |
|---|---|
| 論文名稱: |
IEEE 802.11n上運用訊框聚集性網路編碼之分析與研究 On Frame-Aggregated Random Network Coding for IEEE 802.11n Wireless Networks |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 802.11n 、訊框聚集 、網路編碼 、單點傳播 、廣播 |
| 外文關鍵詞: | 802.11n, Frame Aggregation, Network Coding, Unicast, Broadcast |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於傳統的IEEE 802.11無線區域網路存在低傳輸效率的問題,限制了高畫質的影音傳輸與多媒體應用。隨著IEEE 802.11n的提出,雖然改善了傳統IEEE 802.11 於數據鏈路層效能不彰的問題,但在不穩定的無線通道狀況下,因封包遺失或錯誤所使用的重傳機制 (e.g., ARQ or H-ARQ) 卻因沒有考慮訊框聚集 (frame aggregation) 的特性,造成網路傳輸效能低落。近年來網路編碼 (network coding) 理論因其可大幅提升網路傳輸效能而備受矚目。本研究基於網路編碼理論設計一套訊框聚集性隨機網路編碼 (FAR: Frame Aggregation with Random Network Coding) 機制以運用於IEEE 802.11n等網路。另外,目前的IEEE 802.11n在群播 (multicast) 或廣播 (broadcast) 應用中,沒有提供使用者回饋 (feedback) 的機制,然而這些接收者可能因為位置或干擾造成訊號品質不同,為了達到所有使用者接收相同資料,因此通常被迫只能使用最穩定但最低速的調變方式進行廣播,導致大幅降低廣播效能。針對前述的問題,在本論文中,我們參考IEEE 802.11aa標準與其他相關文獻,設計適用於FAR的廣播回饋機制以及調變選擇演算法,以大幅提升廣播效能。最後,本論文分別針對單點傳播 (unicast) 與廣播之訊框聚集性網路編碼進行效能分析,探討在不同通道狀況下的網路吞吐量以及封包延遲的變化,以分析此編碼機制在此網路環境下的效能,並且透過電腦模擬實驗以驗證所提出之數學分析模型的正確性及準確性,結果顯示分析與模擬所獲得的資料攜吻合,顯示FAR機制在通道不穩定的情況下能帶來極大的效能改善。
The low transmission efficiency issue in IEEE 802.11 wireless networks hinders the transmission of high-definition videos and multimedia data. IEEE 802.11n is designed to resolve the transmission efficiency issue by employing a frame aggregation mechanism to minimize the overhead at the MAC layer. Unfortunately, the transmission efficiency issue is not completely resolved in IEEE 802.11n, especially when packets are lost due to unstable channel conditions. A lot of research in the literature proposes various error recovery schemes (e.g., ARQ or H-ARQ) to perform retransmission when packets are lost in a unicast scenario. However, these proposed schemes only achieve limited performance improvement because they do not take advantage of the frame aggregation feature. In this study, a transmission mechanism called Frame Aggregated Random network coding (FAR) is designed to significantly minimize the transmission overhead and improve the system throughput when the channel quality is not stable. FAR applies random network coding while jointly considering the benefit provided by the frame aggregation to dramatically reduce the overhead caused by retransmission and improve the bandwidth utilization. Furthermore, this study extends FAR to provide an efficient transmission scheme for broadcasting to all users covered by a base station. An analytical model is also developed for FAR to evaluate the mean goodput and packet decoding delay under various error rates. Finally, The simulation results and analytical results both show that FAR achieves significant improvement on the system throughput over current existed schemes while providing a comparable delay.
[1]A.A. Yazdi, S. Sorour, S. Valaee, and R.Y. Kim, “Optimum Network Coding for Delay Sensitive Applications in WiMAX Unicast,” IEEE Conference on Computer Communications, pp. 19 - 25, April 2009.
[2]A. Basalamah, H. Sugimoto, and T. Sato, “A Rate Adaptive Multicast Protocol for Providing MAC Layer Reliability in WLANs,” IEEE Conference on Vehicular Technology Conference, vol. 3, pp. 1216 - 1220, May 2006.
[3]A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies for media streaming over wireless networks,” IEEE Communications Magazine, vol. 46, no. 1, pp. 72 - 79, Janurary 2008.
[4]B. J. Kwak, N. O. Song, and L. E. Miller, “Performance Analysis of Exponential Backoff,” IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp. 343 - 355, April 2005.
[5]C. Y. Wang, H. Y. Wei, “IEEE 802.11n MAC Enhancement and Performance Evaluation,” Mobile Networks and Applications, vol. 14, no. 6, pp. 760 - 771, December 2009.
[6]D. Nguyen , T. Tran, T. Nguyen and B. Bose, “Wireless Broadcast Using Network Coding,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 914 - 925, February 2009.
[7]D. Skordoulis, Q. Ni, H. H. Chen, A. P. Stephens, C. Liu, and A. Jamalipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs,” IEEE Wireless Communications, vol. 15, no. 1, pp. 40 - 47, February 2008.
[8]E.G. Varthis and D. I. Fotiadis, "A comparison of stop-and-wait and go-back-N ARQ schemes for IEEE 802.11e wireless infrared networks," Computer Communication, vol. 29, no. 8, pp 1015 - 1025, May 2006.
[9]G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535 - 547, March 2000.
[10]G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF Performance Analysis,” IEEE Communications Letters, vol. 9, no. 8, pp. 765 - 767, August 2005.
[11]G. J. Foschini and M. J. Gans, “On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311 - 335, 1998.
[12]H. T. Lin, Y. Y. Lin, H. J. Kang. “Adaptive Network Coding for Broadband Wireless Access Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 1, pp. 4 - 18, January 2013.
[13]IEEE 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, June 1999.
[14]IEEE 802.11n, “Part 11: Wireless LAN Media Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput,” draft Amendment to IEEE 802.11, Draft 11.0, June 2009.
[15]IEEE P802.11aa/D3.01 Draft Standard for Information Technology -Telecommunications and information exchange between ystems-Local and metropolitan area networks-Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 3: MAC Enhancements, June 2011.
[16]J. Jin, B. Li, and T. Kong, “Is random network coding helpful in WiMAX," IEEE Conference on Computer Communications, pp. 13 - 18, April 2008.
[17]J. Kuri and S. K. Kasera, “Reliable Multicast in Multi-Access Wireless LANs,” IEEE Conference on Computer and Communications, vol. 2, pp. 760 - 767, March 1999.
[18]J. S. Lin, K. T. Feng, Y. Z. Huang, and L. C. Wang, “Novel Design and Analysis of Aggregated ARQ Protocols for IEEE 802.11n Networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 3, pp. 556 - 570, March 2013.
[19]J. Villalón, P. Cuenca, and L. Orozco-Barbosa, “ARSM: a Cross-layer Auto Rate Selection Multicast Mechanism for Multii-rate Wireless LANs,” IET Communications, vol. 1, no. 5, pp. 893 - 902, October 2007.
[20]L. Tan, N. Wang, "Future internet: The Internet of Things," International Conference on Advanced Computer Theory and Engineering, vol. 5, pp. 20 - 22, August 2010.
[21]P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” Allerton Conference on Communication, Control, and Computing, October 2003.
[22]P. Frenger, S. Parkvall, and E. Dahlman, “Performance Comparison of HARQ with Chase Combining and Incremental Redundancy for HSDPA,” IEEE Conference on Vehicular Technology, vol. 3, pp. 1829 - 1833, October 2001.
[23]Q. Ni, T. Li, T. Turletti, and Y. Xiao, “Saturation Throughput Analysis of Error-Prone 802.11 Wireless Networks,” Wiley Journal of Wireless Communications and Mobile Computing, vol. 5, no. 8, pp. 945 - 956, December 2005.
[24]S. Choi, N. Choi, Y. Seok, T. Kwon, and Y. Choi, “Leader-Based Rate Adaptive Multicasting for Wireless LANs,” IEEE Conference on IEEE Global Telecommunications, pp. 3656 - 3660, November 2007.
[25]S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and Jon Crowcroft,“XORs in the Air: Practical Wireless Network Coding,” IEEE/ACM Transactions on Networking, vol. 16, no. 3, pp. 497 - 510, June 2008.
[26]T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi, and D. Karger, “A Random Linear Network Coding Approach to Multicast,” IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413 - 4430, October 2006.
[27]T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, and T. Turletti, “Aggregation With Fragment Retransmission for Very High-Speed WLANs,” IEEE/ACM Transactions on Networking, vol. 17, no. 2, pp. 591 - 604, April 2009.
[28]W. S. Lim, D. W. Kim, and Y. J. Suh, "Design of Efficient Multicast Protocol for IEEE 802.11n WLANs and Cross-Layer Optimization for Scalable Video Streaming," IEEE Transactions on Mobile Computing, vol. 11, no. 5, pp. 780 - 792, May 2012.
[29]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Very High Throughput for Operation in Bands below 6GHz, IEEE P802.11ac/D2.0 Std., January 2012
[30]X. Wang, L. Wang, Y. Wang, Y. S. Zhang, A. Yamada, “Supporting MAC Layer Multicast in IEEE 802.11n: Issues and Solutions,” IEEE Conference on Wireless Communications and Networking, pp. 1 - 6, April 2009.
[31]Y. Daldoul, T. Ahmed, and D. Meddour, “IEEE 802.11n aggregation performance study for the multicast,” IFIP Wireless Days, pp. 1 - 6, October 2011.
[32]Y. Lin, and V. W. S. Wong, “Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11n WLANs,” IEEE Conference on Global Telecommunications, pp. 1 - 6, November 2006.
[33]Z. Li, Q. Luo, and W. Featherstone, “N-in-1 Retransmission with Network Coding,” IEEE Transactions on Wireless Communications, vol. 9, no. 9, pp. 2689 - 2694, September 2010.