| 研究生: |
施翰昆 Shih, Han-Kun |
|---|---|
| 論文名稱: |
無光罩曝光機之紫外光光源開發與成像鏡頭檢測 Ultraviolet Light Source Development and Imaging Lens Inspection for Maskless Lithography |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 無光罩微影 、均光光源 、成像式複眼陣列 、鏡頭檢測 、調製傳遞函數 |
| 外文關鍵詞: | Maskless Lithography, Homogenized Light Source, Imaging Lens, Modulation Transfer Function (MTF) |
| 相關次數: | 點閱:106 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃光微影製程技術是新興科技產業的重要核心技術,而無光罩微影技術則是黃光微影的最新發展趨勢。本論文針對以數位光學為基礎之無光罩微影系統中的二項重要元件進行研究,第一是設計可應用於無光罩微影系統之紫外光均光光源,第二是針對無光罩微影系統中成像鏡頭的性能進行檢測。
在紫外光均光光源的開發方面,目標是要能夠均勻地照亮無光罩微影系統的核心元件:數位微反射鏡裝置 (Digital Micromirror Device, DMD),本研究將針對二種波長 (365 nm與405 nm) 之紫外光發光二極體作為光源,以成像式複眼透鏡陣列作為架構,分別完成均光面積14.1 × 7.7 mm2、14.4 × 7.8 mm2的紫外光均光光源,可以搭配DMD與成像鏡頭完成無光罩微影製程。
在成像鏡頭檢測方面,引入調製傳遞函數 (Modulation Transfer Function, MTF) 的量測方法,透過CMOS影像感測器擷取經成像鏡頭投射成像之DMD產生的數位光學影像,藉由分析其分辨率與對比度,以實驗量測確認該成像鏡頭的MTF曲線與能量利用率。針對先前開發之0.5倍雙遠心紫外光鏡頭,實驗結果顯示在365 nm與405 nm的二種波長下,此一光學鏡頭均可以應用於以DMD為基礎的無光罩微影技術。
關鍵字: 無光罩微影、均光光源、成像式複眼陣列、鏡頭檢測、調製傳遞函數
Photolithography plays a critical role in many advanced technologies and industries. Maskless lithography has been emerging as a key technology in photolithography in recent years. In this thesis, two important components in maskless lithography systems based on digital light processing will be studied and investigated. The first one is to develop a homogenized ultraviolet (UV) light source for maskless lithography. The second one is to evaluate the optical performance of the imaging projection lens used in maskless lithography systems.
In developing the homogenized UV light sources, UV light-emitting diodes are used along with the imaging type of fly-eye’s lens array homogenizer. Both light sources with the wavelength of 365 nm and 405 nm are successfully constructed for a uniformly lighted area of 14.1×7.7 mm2 and 14.4×7.8 mm2, which can be directly applied to DMD-based maskless lithography.
In the optical evaluation of the UV imaging lens for maskless lithography, the concept of the modulation transfer function (MTF) is introduced. The optical image projected by a UV imaging lens and a DMD is captured and analyzed by a CMOS image sensor. The MTF curve of the UV imaging lens is found by analyzing the resolution and contrast. It is found experimentally that, for both wavelengths of 405 nm and 365 nm, the MTF and the transmission efficiency of the UV imaging lens are well enough for maskless lithography.
Keywords: Maskless Lithography, Homogenized Light Source, Imaging Lens, lens Inspection, Modulation Transfer Function (MTF)
[1]. R. D. Loor, L. Penning, and R. Slagle, “Polygon laser scanning,” Laser Tech. J., vol. 11, no. 3, pp. 32–34, 2014.
[2]. L. J. Hornbeck, “Digital light processing for high-brightness high-resolution applications,” Proc. SPIE, vol. 3013, p. 27, 1997.
[3]. T. Hayashi, T. Shibata, T. Kawashima, E. Makino, T. Mineta, and T. Masuzawad, “Photolithography system with liquid crystal display asactive gray-tone mask for 3d structuring of photoresist,” Sens. Actuators, A, vol. 144, no. 15, pp. 381–388, 2008.
[4]. C. Sun, N. Fang, D. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Ac-tuators, A, vol. 121, no. 1, pp. 113–120, 2005.
[5]. T. Itoh, S. Matsunaga, and N. Okada, “Development of the laser beam scanner which uses the prism cube mirror with dmd,” in 2015 IEEE Conference on Control Applications (CCA), pp. 288–293 ,2015.
[6]. T. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, and G. Schu-bert, “Maskless electron beam lithography: prospects, progress, and challenges,” Microelectron. Eng., vol. 61-62, pp. 285–293, 2002.
[7]. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt., vol. 25, no. 3, pp. 377–381,1986.
[8]. Y. Awatsuji, M. Sasada, N. Kawano, and T. Kubota, “Reflective mi-crooptical element array fabricated by photofabrication technique,” Appl.Phys., vol. 43, no. 85, p. 5845,2004.
[9]. A.Yasuhiro, S.Masaki, K.Naoki, K.Toshihiro “Reflective microoptical element array fabricated by photofabri-cation technique,” Appl. Phys., vol. 43, no. 85, p. 5845, 2004
[10]. 國家實驗研究院 儀器科技研究中心(2007):光學元件精密製造與檢測,355-386。
[11]. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems. Cambridge MA: McGraw-Hill, 2000.
[12]. Y. Ma and V. N. Borovytsky, “Design of a 16.5 megapixel camera lens for a mobile phone,” OALibJ., vol. 2, no. 3,2015.
[13]. G. H. Smith, Practical Computer-Aided Lens Design. Willmann-Bell,1998.
[14]. H. L. Chien, Y. H. Chiu, and Y. C. Lee, “Maskless lithography based on oblique scanning of point array with digital distortion correction,” Opt.Lasers Eng, vol. 136,2021.
[15]. R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitationsand constraints,” Proc. SPIE, vol. 7102, 2008.
[16]. Refractive index database of Polydimethylsiloxane. From https://refractiveindex.info/?shelf=organicbook=polydimethylsiloxanepage=Schneider-Sylgard184 (2021/08/24).
[17]. Luminus CBM-80-UVX Product datasheet. Retrieved August 24, 2022, from https://download.luminus.com/datasheets/Luminus_CBM-80-UV_Datasheet.pdf
[18]. Luminus CBM-120-UVX Product datasheet. Retrieved August 24, 2022, from https://www.mouser.com/datasheet/2/245/Luminus_CBM-120-UV-Gen4_Datasheet-1499161.pdf
[19]. H. C, W. JA, S.-C. D, and H. A., “Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.” Biomed Microdevices, vol. 22,
[20]. 楊聰偉,光點陣列斜掃描與二維及三維無光罩微影技術。國立成功大學機械工程學系碩士論文,2018。
[21]. 王耀霆,無光罩微影技術之光源系統開發與稜鏡斜角成像曝光之可行性研究。國立成功大學機械工程學系碩士論文,2021。