簡易檢索 / 詳目顯示

研究生: 陳冠州
Chen, Guan-Jhou
論文名稱: 褐鐵型紅土鎳礦提煉鎳生鐵之鎳富集研究
Study on Nickel Enrichment in Nickel Pig Iron during Reduction and Smelting of Limonite Laterite
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 185
中文關鍵詞: 褐鐵型紅土鎳礦煅燒碳熱還原熔分
外文關鍵詞: Limonite, Calcination, Carbothermic Reduction, Melting
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳為世界上重要金屬元素,目前廣泛應用於不鏽鋼製程。低品位(褐鐵型)紅土鎳礦於全世界蘊含量仍相當豐富,故提煉礦源中鎳鐵金屬元素已成為重要課題。本研究方法使用紅土鎳礦生料及煅燒後原料,以石墨為還原劑製成含碳球團,分別利用碳熱還原與熔分方式製備鎳鐵預還原團塊與鎳生鐵(鎳鐵合金),找尋較佳鎳鐵品位和鎳回收率之較適操作條件(溫度、時間、C/O莫耳比等)。主要研究子題分別包括煅燒前處理、碳熱還原及高溫熔分等三個階段,依序求得較適合煅燒溫度、預還原球團優化條件、工業級規格鎳生鐵之優化富集條件。研究結果摘要如下:
    (1)煅燒前處理: 當還原條件為1100oC持溫30分鐘及C/O=1,未煅燒紅土鎳礦含碳球團碳熱還原之鎳品位為4.7%,鎳回收率為84%;煅燒後(煅燒溫度900oC)紅土鎳礦含碳球團碳熱還原之鎳品位為11%,鎳回收率為57%。煅燒後紅土鎳礦含碳球團於還原溫度(1100oC)所得球團結構較為鬆散,有利於氣相還原,但不利於傳熱,由於鎳比鐵較易還原,故造成整體鎳品位上升,鎳回收率下降。
    (2)預還原球團優化條件: 煅燒溫度400 oC之紅土鎳礦顆粒擁有較高的比表面積48.84 m2/g及平均孔洞尺寸29.68 Å,利於氣固還原反應。於還原溫度1100 oC、還原時間30分鐘及碳氧比0.6條件下,其預還原球團鎳品位及鎳回收率分別為最佳的78.2 wt%及90.2wt%。
    (3)工業級規格鎳生鐵之優化富集條件: 煅燒溫度400oC之褐鐵型紅土鎳礦(貧鎳型)添加石墨之含碳球團,經碳熱還原與熔分後,所得最佳參數組合為:碳氧比為0.35、添加劑(SiO2)10%、還原溫度1100oC、還原時間30分鐘、熔分溫度1550oC及熔分時間為60分鐘。試驗所得鎳鐵合金之鎳品位16.8%及鎳回收率86.5%。(褐鐵型紅土鎳礦初始鎳品位1.18%)。
    本研究亦利用生質煤(C/O=0.3)做為還原劑,添加於煅燒溫度400oC之褐鐵型紅土鎳礦,其含碳球團於預還原條件(還原溫度1100oC及還原時間30分鐘)和熔分條件(熔分溫度1550oC及熔分時間60分鐘),實驗可得鎳鐵合金之鎳品位16.7%及鎳回收率87.7%。(褐鐵型紅土鎳礦初始鎳品位1.18%)。此外,延伸此研究方法應用至腐植型紅土鎳礦(富鎳型),結果顯示,經400oC煅燒溫度處理後,於預還原條件(還原溫度1100oC及還原時間30分鐘)與熔分條件(熔分溫度1550oC及熔分時間60分鐘)下,可得鎳品位25.2%及鎳回收率81.2%之鎳鐵合金。(腐植型紅土鎳礦初始鎳品位3.10%)
    綜合上述,本研究已建立一提煉紅土鎳礦之富集鎳研究方法,可應用於任何型態之紅土鎳礦,找尋較佳鎳生鐵鎳品位與鎳回收率之製程操作條件。利用低品級之褐鐵型紅土鎳礦於火法製程(煅燒前處理及還原熔分)冶煉出與富礦相同的成果並符合工業化標準(鎳品位15%及鎳回收率85%)的鎳生鐵產品並成為鎳的來源。

    This research is divided into three parts, which include in calcination process, calcining temperatures and high temperature melting for limonite laterite. First, compared with reduced uncalcined laterite, when calcined limonite pellets were reduced at 1100oC for 30 min and carbon-oxygen ratio=1, the Nickel grade increased from 4.7% to 11.4% and the recovery of Nickel decreased from 84.5% to 57.1%. Second, 400oC-calcined limonite ore possesses a higher specific surface area of 48.84m2/g, and an average pore size of 29.68 Å, which provide better activity for reduction. And 400oC-calcined limonite ore obtained the best nickel grade of 78.2 % and the best recovery rate of 90.2 % under a reduction temperature of 1100oC, a reduction time of 30 min and a carbon-oxygen ratio of 0.6. Finally, 400oC-calcining limonite added graphite (C/O=0.35) and SiO2 (10%) which can obtain nickel grade 16.8% and nickel recovery 86.5% under a reduction temperature of 1100oC for a reduction time of 30 min and a melting temperature of 1550oC for a reduction time of 60 min. And also 400oC-calcining limonite added bio-coal (C/O=0.3) which can obtain nickel grade 16.7% and nickel recovery 87.7% under a reduction temperature of 1100oC for a reduction time of 30 min and a melting temperature of 1550oC for a reduction time of 60 min.

    摘要 I Extended Abstract IV 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 第二章 理論基礎與文獻回顧 10 2-1 理論基礎 10 2-1-1 紅土鎳礦冶煉鎳生鐵製程發展 10 2-1-2 碳熱還原反應與自由能 11 2-1-3 褐鐵型紅土鎳礦礦性分析(XRD,DSC) 13 2-2 製程介紹 15 2-2-1 迴轉窯乾燥預還原-電爐還原熔煉法 15 2-2-2 燒結-鼓風爐硫化熔煉法 16 2-2-3 燒結-高爐還原熔煉法 17 2-2-4 還原焙燒-氨浸工藝 17 2-2-5 高壓酸浸工藝 18 2-3 鎳富集技術 20 2-3-1 煅燒處理 20 2-3-2 高溫還原及熔分 22 2-3-2-1 碳熱還原影響 22 2-3-2-2 高溫熔分影響 24 2-3-3 生質煤應用碳熱還原之特性 26 第三章 煅燒前處理對褐鐵型紅土鎳礦影響 49 3-1 研究動機 49 3-2 實驗方法與試片前處理 49 3-3 結果與討論 54 3-3-1 未煅燒處理褐鐵型紅土鎳礦之碳熱還原結果 54 3-3-1-1 化學分析 54 3-3-1-2 XRD分析 55 3-3-1-3 球團剖面巨觀觀察 56 3-3-1-4 SEM顯微組織觀察 56 3-3-2 碳氧比與還原溫度對煅燒後紅土鎳礦碳熱還原影響 58 3-3-2-1 化學組成分析 58 3-3-2-2 XRD分析 59 3-3-2-3 球團剖面巨觀觀察 59 3-3-2-4 SEM顯微組織觀察 60 3-3-3 煅燒前後綜合比較 61 3-3-3-1 化學組成分析 62 3-3-3-2 XRD分析 63 3-3-3-3 球團剖面巨觀觀察 63 3-4 本章結論 64 第四章 煅燒溫度對紅土鎳礦碳熱還原效率之影響 92 4-1 研究動機 92 4-2 實驗方法及試片前處理 92 4-3 結果與討論 95 4-3-1 經900 oC煅燒後褐鐵型紅土鎳礦含碳球團之較佳還原條件探討 95 4-3-1-1 還原時間對紅土鎳礦預還原球團鎳品位及回收率之影響 95 4-3-1-2 碳氧比對紅土鎳礦預還原球團鎳品位及回收率之影響 96 4-3-2 不同煅燒溫度對紅土鎳礦預還原球團碳熱還原之影響 97 4-3-3 添加劑含量對不同煅燒溫度所得紅土鎳礦預還原球團之影響 99 4-4 本章結論 103 第五章 煅燒後紅土鎳礦之碳熱還原熔分特性研究 120 5-1 研究動機 120 5-2 實驗方法及試片前處理 121 5-3 結果與討論 123 5-3-1 熔分條件探討 123 5-3-1-1 碳氧比對熔分影響 123 5-3-1-2 添加劑對熔分影響 126 5-3-1-3 熔分溫度及時間對熔分影響 129 5-3-2 還原劑種類探討 131 5-3-2-1 生質煤對熔分影響 132 5-3-2-2 SEM顯微組織結果 133 5-4 本章結論 133 第六章 提煉紅土鎳礦鎳生鐵之富集鎳研究方法建立 160 6-1 前言 160 6-2 建立適合之紅土鎳礦煅燒條件 161 6-3 建立預還原含碳球團之優化條件 162 6-4 建立符合工業級鎳生鐵之優化富集條件 164 6-5 腐植型紅土鎳礦之應用實例 165 6-6 本章結論 165 第七章 結論 170 第八章 未來工作 172 參考文獻 173 相關發表著作 185

    [1] Z.C. Cao, T.C. Sun, H.F. Yang, J.J. Wang, and X.D. Wu, “Recovery of iron and nickel from nickel laterite ore by direct reduction roasting and magnetic separation, ” Journal of University of Science and Technology Beijing, vol. 32, no. 6, pp. 708-712, 2010.
    [2] C.M. Zhao and Y.C. Zhai, “Research development on nickel recovery technologies from nickel-bearing laterite, ” Materials Review, vol. 11, pp. 73-76, 2009.
    [3] C.Y. Wang, F. Yin, Y.Q. Chen, Z. Wang, and J.J. Wang, “Worldwide processing technologies and progress of nickel laterites, ” The Chinese Journal of Nonferrous Metals, vol. 18, pp. s1-s8, 2008.
    [4] W. Liang, H. Wang, J.G. Fu, and Z.X. He, “High recovery of ferro-nickel from low grade nickel laterite ore, ” Journal of Central South University, vol. 8, pp. 2173-2177, 2011.
    [5] M.J. Rao, G.H. Li, T. Jiang, J. Luo, Y.B. Zhang, and X.H. Fan, “Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: a review, ” The Journal of the Minerals, vol. 65, no. 11, pp. 1573-1583, 2013.
    [6] A.D. Dalvi, W.G. Bacon and R.C. Osborne, “The past and the future of nickel laterites, ” The Prospectors and Developers Association of Canada, pp. 1-27, 2004.
    [7] Y.T. Zhang, Z. Zhang, X.Z. Yuan, and X.G. You, “Study on direct hydrogen reduction experiment of a low-grade laterite-nickel ores, ” Journal of Sichuan University, vol. 2, pp. 172-176, 2011.
    [8] A.E.M. Warner, C.M. Diaz, A.D. Dalvi, P.J. Mackey, and A.V. Tarasov, “JOM world nonferrous smelter survey, Part III: Nickel: Laterite, ” The Journal of the Minerals, vol. 58, no. 4, pp. 11-20, 2006.
    [9] Z.H. Liu, X.B. Ma, D.Q. Zhu, Y.H. Li, and Q.H. Li, “Preparation of ferronickel from laterite ore in reduction smelting process, ” Journal of Central South University, vol. 10, pp. 2905-2910, 2011.
    [10] C.C. Lin, J.L. Zhang, D.H. Huang, R. Mao, and J.G. Shao, “Enrichment of nickel and iron from nickel laterite ore/coal composite pellets by deep reduction and magnetic separation, ” Journal of University of Science and Technology Beijing, vol. 33, no. 3, pp. 270-175, 2011.
    [11] S. Sufriadin, A. Idrus, S. Pramumijoyo, I.W. Warmada, I. Nur, A. Imai, A.M. Imran, and K. Kaharuddin, “Thermal and infrared studies of garnierite from the soroako nickeliferous laterite deposit, Sulawesi, Indonesia,” Indonesian Journal on Geoscience, vol. 7, no. 2, pp. 77-85, 2012.
    [12] G. Alevizos and E. Repouskou, “Ore microscopy and microanalysis of the nickeliferous iron ores from komnina vermion area (NW Greece),” Geomaterials, vol. 1, 2011, pp. 46-50, 2011.
    [13] W.N. Mu, S.Z. Shi and Y.C. Zhai, "Magnesium recovery from desiliconization slag of nickel laterite ores by carbonization." Advanced Materials Research, pp. 255-258, 2013.
    [14] M.A. Rhamdhani, P.C. Hayes and E. Jak, “Nickel laterite Part 1–microstructure and phase characterisations during reduction roasting and leaching,” Mineral Processing and Extractive Metallurgy, vol. 118, no. 3, pp. 129-145, 2009.
    [15] M.A. Rhamdhani, P.C. Hayes and E. Jak, “Nickel laterite Part 2–thermodynamic analysis of phase transformations occurring during reduction roasting,” Mineral Processing and Extractive Metallurgy, vol. 118, no. 3, pp. 146-155, 2013.
    [16] 張友平,周渝生,李肇毅,李維國,“紅土礦資源特點和火法冶金工藝分析,” 鐵合金,vol. 38,no. 6,pp. 18-21,2007。
    [17] X.U. Dong, Y. Liu, J. Li, and Y.C. Zhai, “Enriching metallic nickel from laterite nickel ore via thermal carbon reduction-magnetic separation process,” Journal of Northeastern University, vol. 31, pp. 559-563, 2010.
    [18] J.G. Fu, H. Wang, T.Y. Ling, and H.Q. Ye, “Status and progress on treatment technologies of laterite-nickel ore,” Ferro-alloys, vol. 3, pp. 16-22, 2009.
    [19] H.T. Cui, P. Xue and Y.S. Xu, “Development of nickel metallurgy and progress of technology in China,” Mining and Metallurgy, vol. 6, pp. 43-54, 1997.
    [20] D.X. Liu, “Recent development in nickel and cobalt recovery technologies from laterite ” Nonferrous Metals, vol. 3, pp. 6-10, 2002.
    [21] J.X. Fu, Z. Cheng, W.S. Hwang, Y.T. Liau, and Y.T. Lin, “Exploration of biomass char for CO2 reduction in RHF process for steel production,” International Journal of Greenhouse Gas Control, vol. 8, pp. 143-149, 2012.
    [22] K.M. Lu, W.J. Lee, W.H. Chen, S.H. Liu, and T.C. Lin, “Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres,” Bioresource Technology, vol. 123, pp. 98-105, 2012.
    [23] K.M. Lu, W.J. Lee, W.H. Chen, and T.C. Lin, “Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends,” Applied Energy, vol. 105, pp. 57-65, 2013.
    [24] 任江濤,朱荣,林芳,任大寧,郭明威,“轉底爐工藝處理紅土貧鐵礦工業試驗,” 煉鐵,vol. 27,no. 1,pp. 60-62, 2008。
    [25] 郭培民,趙沛,龐建明,“高爐冶煉紅土礦生產鎳鐵合金關鍵技術分析及發展方向,” 有色金属,no. 5,pp. 3-6,2011。
    [26] T. Tung, F. Apaydin and K. Yildiz, “Effects of mechanical activation on the structure of nickeliferous laterite,” Acta Physica Polonica A, vol. 123, no. 2, pp. 349-351, 2013.
    [27] Z. Gashi, S. Imeri, N. Lohja, M. Zabeli, N. Tahiraj, and N. Murati, “Experimental research on pre-reduction of nickel silicate ore in new ferronickel factory in Drenas, ” World Scientific and Engineering Academy and Society, pp. 306-311, 2011.
    [28] 吳龍忠,“利用轉底爐還原紅土礦的可行性分析,” 江蘇冶金,vol. 36,no. 6,pp. 64-66,2008。
    [29] Y.P. Zhang, Y.S. Zhou, Z.Y. Li, and W.G. Li, “Characteristics of laterite resource and analysis on its pyrometallurgy process,” Ferro-alloys, vol. 6, pp. 18-22, 2007.
    [30] Y.V. Swamy, B.B. Kar and J.K. Mohanty, “Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites,” Hydrometallurgy, vol. 69, no. 1, pp. 89-98, 2003.
    [31] M. Kawahara, J.M. Toguri and R.A. Bergman, “Reducibility of laterite ores,” Metallurgical Transactions B, vol. 19, no. 2, pp. 181-186, 1988.
    [32] K.B. Hallberg, B.M. Grail, C.A.D. Plessis, and D.B. Johnson, “Reductive dissolution of ferric iron minerals: a new approach for bio-processing nickel laterites,” Minerals Engineering, vol. 24, no. 7, pp. 620-624, 2011.
    [33] 劉瑤,叢自範,王德全,“對低品位紅土鎳礦常壓浸出的初步探討,” 有色礦冶,vol. 23,no. 5,pp. 28-30,2007。
    [34] H. Wang, Y.X. Chang and L. Huo, “Production technology for smelting ferronickel from laterite-nickel ore, ” CN104451148 A, 2015.
    [35] G.X. Qiu and Q.X. Shi, “Research on reduction and enrichment of ferronickel from laterite-nickel ores using carbon as reductant,” Mining and Metallurgical Engineering, vol. 6, pp. 75-77, 2009.
    [36] G.M. Palmgren, “Reducing metals as a brazing flux, ” US 6858050 B2, 2005.
    [37] Q. Wang, Z. Yang, J. Tian, W. Li, and J. Sun, “Reduction kinetics of iron ore-coal pellet during fast heating,” Ironmaking and Steelmaking, vol. 25, no. 6, pp. 443-447, 1998.
    [38] X.W. Lv, C. Bai, S. He, and Q. Huang, “Mineral change of Philippine and Indonesia nickel lateritic ore during sintering and mineralogy of their sinter,” The Iron and Steel Institute of Japan International, vol. 50, no. 3, pp. 380-385, 2010.
    [39] H. Tsuji, “Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in a rotary kiln for production of ferro-nickel alloy,” The Iron and Steel Institute of Japan International, vol. 52, no. 6, pp. 1000-1009, 2012.
    [40] S. Chander and V.N. Sharma, “Reduction roasting/ammonia leaching of nickeliferous laterites,” Hydrometallurgy, vol. 7, no. 4, pp. 315-327, 1981.
    [41] L.F. Power and G.H. Geiger, “The application of the reduction roast-ammoniacal ammonium carbonate leach to nickel laterites,” Minerals Science, vol. 9, no. 1, pp. 32-50, 1997.
    [42] B.K. Loveday, “The use of oxygen in high pressure acid leaching of nickel laterites,” Minerals Engineering, vol. 21, no. 7, pp. 533-538, 2008.
    [43] B.I. Whittington and D. Muir, “Pressure acid leaching of nickel laterites: a review,” Mineral Processing and Extractive Metullargy Review, vol. 21, no. 6, pp. 527-599, 2000.
    [44] U. Schwertrnann, “Some properties of soil and synthetic iron oxides, ” Iron in Soils and Clay Minerals, vol. 217, pp. 203-250, 1988.
    [45] G.S. Simate, and S. Ndlovu, “Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: Identifying influential factors using statistical design of experiments,” International Journal of Mineral Processing, vol. 88, no. 1, pp. 31-36, 2008.
    [46] W.P.C. Duyvesteyn and M. Omofana, “Recovery of nickel from bioleach solution, ” US 5626648, 1997.
    [47] D. Buchanan, “Nickel,” A Counnidity Review, pp. 211-216, 1982.
    [48] 馬小波,“紅土鎳礦焙燒-還原熔煉生產鎳鐵的研究,” 中南大學碩士論文,2010。
    [49] B. Li, H. Wang and Y.G. Wei, “The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidisation method,” Minerals Engineering, vol. 24, no. 14, pp. 1556-1562, 2011.
    [50] D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng, “Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation,” International Journal of Mineral Processing, vol. 106, pp. 1-7, 2012.
    [51] B.K.T.K. Panda, “Preparation of metallic nickel nugget from lateritic ore and its comparison with synthetic oxidic system,” International Journal of Engineering and Innovative Technology, vol. 3, no. 2, pp. 96-100, 2013.
    [52] H.Z. Li, “Research on roasting characteristics of laterite ore in low temperature,” Science and Technology Innovation Herald, vol. 26, pp. 88-91, 2013.
    [53] J.L. Zhang, R. Mao, D.H. Huang, J.G. Shao, and F.G. Li, “Dehydration mechanism and reduction process dynamics of laterite nickel ore,” The Chinese Journal of Nonferrous Metals, vol. 23, no. 3, pp. 843-851, 2013.
    [54] B. Rizov, “Phase transformations from goethite to hematite and thermal decomposition in various nickeliferous laterite ores,” Journal of the University of Chemical Technology and Metallurgy, vol. 47, no. 2, pp. 207-210, 2012.
    [55] M. Valix and W.H. Cheung, “Study of phase transformation of laterite ores at high temperature,” Minerals Engineering, vol. 15, no. 8, pp. 607-612, 2002.
    [56] J. Kim, G. Dodbiba, H. Tanno, K. Okaya, S. Matsuo, and T. Fujita, “Calcination of low-grade laterite for concentration of Ni by magnetic separation,” Minerals Engineering, vol. 23, no. 4, pp. 282-288, 2010.
    [57] C. A. Pickles, J. Forster and R. Elliott, “Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore,” Minerals Engineering, vol. 65, pp. 33-40, 2014.
    [58] A. Bunjaku, M. Kekkonen and L. Holappa, “Phenomena in thermal treatment of lateritic nickel ores up to 1300 oC,” Other Ferroalloys Fundamentals, pp. 641-652, 2010.
    [59] X.W. Lv, C.G. Bai, G.B. Qiu, T. Hu, and H. Xie, “Dehydrating and sintering of Philippine nickel laterite,” Canadian Metallurgical Quarterly, vol. 50, no. 1, pp. 20-27, 2011.
    [60] E. Keskinkilic, S. Pournaderi, A. Geveci, and Y. A. Topkaya, “Calcination characteristics of laterite ores from the central region of Anatolia,” Journal of the Southern African Institute of Mining and Metallurgy, vol. 112, no. 10, pp. 877-882, 2012.
    [61] X.Z. Yuan, Z.K. Li and J. Liu, “Choice of drying and roasting technologies on laterite ore,” Ferro-alloys, vol. 39, no. 4, pp. 8-10, 2008.
    [62] H. Purwanto, T. Shimasa, R. Takahashi, and J.I. Yagi, “Lowering of grinding energy and enhancement of agglomerate strength by dehydration of Indonesian laterite ore,” The Iron and Steel Institute of Japan International, vol. 42, no. 3, pp. 243-247, 2002.
    [63] E.N. Zevgolis, C. Zografidis, T. Perrakia, and E. Devlin, “Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide,” Journal of Thermal Analysis and Calorimetry, vol. 100, no. 1, pp. 133-139, 2010.
    [64] G.J. Chen, J.S. Shiau, S.H. Liu, and W.S. Hwang, “Effect of calcination on carbothermic reduction of low-Grade laterite,” Science of Advanced Materials, vol. 7, no. 11, pp. 2320-2326, 2015.
    [65] J. Yang, G.Q. Zhang, O. Ostrovski, and S. Jahanshahi, “Changes in an Australian laterite ore in the process of heat treatment,” Minerals Engineering, vol. 54, pp. 110-115, 2013.
    [66] F. O’Connor, W.H. Cheung, and M. Valix, “Reduction roasting of limonite ores: effect of dehydroxylation,” International Journal of Mineral Processing, vol. 80, no. 2, pp. 88-99, 2006.
    [67] J.W. Soedarsono, R. Simarmata and A. Kawigraha, R.D. Sulament-Ariobimo, A. Rustandi, S. Tjahyono, A. Zamri, “Effect of Reduction Process Parameter in Direct Reduction Process of Laterite to Produce Substitute Pig Iron for Thin Wall Ductile Iron Material,” Advanced Materials Research, pp. 95-99, 2014.
    [68] H. Yildirim, A. Turan and O. Yucel, “Nickel pig iron (NPI) production from domestic lateritic nickel ores using induction furnace,” International Iron & Steel Symposium, pp. 2-4, 2012.
    [69] E.O. Yape, “Fe-Ni-Cr crude alloy production from direct smelting of chromite and laterite ores,” Journal of Medical and Bioengineering, vol. 3, no. 4, pp. 245-250, 2014.
    [70] Y.J. Li, Y.S. Sun, Y.X. Han, and P. Gao, “Coal-based reduction mechanism of low-grade laterite ore,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 11, pp. 3428-3433, 2013.
    [71] G.J. Chen, W.S. Hwang, S.H. Liu, and J.S. Shiau, “The effect of bio-coal on the carbothermic reduction of laterite ores,” Materials Transactions, vol. 56, no. 4, pp. 550-555, 2015.
    [72] D.H. Li, X.W. Lu, C.G. Bai, T. Hu, C. Pang, and J.Q. Yin, “Reduction roasting and magnetic separation of nickel laterite pellets bearing carbon,” Journal of Iron and Steel Research, vol. 10, pp. 9-14, 2011.
    [73] T. Jiang, M.D. Liu, G.H. Li, N. Sun, J.H. Zeng, and G.Z. Qiu, “Effects of sodium-salt on Al-Fe separation by reduction roasting for high-aluminum content limonite,” The Chinese Journal of Nonferrous Metals, vol. 6, pp. 031, 2010.
    [74] G.H. Li, T.M. Shi, M.J. Rao, T. Jiang, and Y.B. Zhang, “Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate,” Minerals Engineering, vol. 32, pp. 19-26, 2012.
    [75] J. Lu, S.J. Liu, S.G. Ju, W.G. Du, F. Pan, and S. Yang, “The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore,” Minerals Engineering, vol. 49, pp. 154-164, 2013.
    [76] T.C. Sun, M. Jiang, Z.G. Liu, N. Liu, S.Y. Zhang, J. Kou, and C.Y. Xu, “Research on the effect of additive on selective reduction of the laterite ores with low nickel and high iron content,” Journal of China University of Mining and Technology, vol. 42, pp. 838-844, 2013.
    [77] 劉玉芹,矽酸鹽陶瓷相圖,化學工業出版社,2011。
    [78] J.J. Hou, Y.Z. Jia, D.L. Liang, and J.F. Si, “Study on nickel laterite Ni-Fe reduction in rotary kiln-electric furnace,” China Nonferrous Metallurgy, vol. 3, pp. 70-73, 2014.
    [79] Y.G. Guo, R. Zhu, M. Lu, M.W. Guo, Y.W. Wang, and C.F. Zhou, “Extraction of a nickel-iron alloy from nickel laterite ore through selective reduction and smelting process,” Journal of University of Science and Technology Beijing, vol. 36, pp. 584-597, 2014.
    [80] Y.G. Guo, R. Zhu and Y.W. Wang, “Preparation of granular nickel-ferrite from laterite nickel ore by selective reduction and smelting process,” Sintering and Pelletizing, vol. 5, pp. 46-50, 2014.
    [81] C. Pan, X.W. Lu, C.G. Bai, E.G. Guo, P. Chen, and M. Liu, “Ferronickel nugget production from nickel laterite by semi-molten reduction,” Journal of Central South University vol. 1, pp. 16-24, 2014.
    [82] 林重春,張建良,黄冬華,“台車連續爐生產低硫磷鎳鐵精礦的實踐,” 鐵合金,no. 5,pp. 1-4,2011。
    [83] X.W. Lu, E.G. Guo, Q.G. Yuan, C. Pan, and M. Liu, “New method to produce FeNi nuggets from low grade ore by semi-molten reducition,” Ferronickel Production and Operation, pp. 223-228, 2013.
    [84] W.J. Yang, C.Y. Wang, B.Z. Ma, F. Yin, and Y.Q. Chen, “Study on the influence of CaO on reduction smelting for the laterite ore,” Advanced Materials Research, pp. 3260-3264, 2013.
    [85] Y.W. Wang, R. Zhu, Y.G. Guo, and Y. Wang, “Preparation of nickel iron alloy from nickel laterite ore through selective reduction and smelting separation process,” Industrial Heating, vol. 44, pp. 52-57, 2015.
    [86] H.Z. Li and H.J. Guo, “Mechanism study of metal particles agglomeration in semi-fused slag of laterite pellet with carbon,” Ferro-alloys, vol. 5, pp. 21-27, 2014.
    [87] Y. Jia, W. Ni, F. Zheng, J.P. Feng, Z.G. Wang, and C.Y. Xu, “The growth characteristics of metallic iron grains in depth reduction of oolitic hematite,” Metal Mine, vol. 39, no. 10, pp. 52-56, 2010.
    [88] W.E. Jackson, J.M.D. Leon, G.E.B. Jr, G.A. Waychunas, S.D. Conradson, and J.M. Combes, “High-temperature XAS study of Fe2SiO4 liquid: Reduced coordination of ferrous iron,” Science, vol. 262, no. 5131, pp. 229-233, 1993.
    [89] P. Wu, G. Eriksson, D. Pelton, and M. Blander, “Prediction of the thermodynamic properties and phase diagrams of silicate systems-evaluation of the FeO-MgO-SiO2 system,” The Iron and Steel Institute of Japan International, vol. 33, no. 1, pp. 26-35, 1993.
    [90] 林耀堂,“以椰殼炭與鐵礦進行碳熱還原之研究,”成功大學材料科學及工程學系學位論文, 2012.
    [91] M.H. Liu and C.M. Cheng, “Resource recovery of waste wood furniture,” Special Issue of Engineering Environment, vol. 11, pp. 131-148, 2003.
    [92] 劉彥佑,“木本與草本生質物混合製粒研究,” 臺灣大學森林環境暨資源學研究所學位論文,2010。
    [93] M.J. Prins, K.J. Ptasinski and F.J.J.G. Janssen, “Torrefaction of wood: Part 1. Weight loss kinetics,” Journal of Analytical and Applied Pyrolysis, vol. 77, no. 1, pp. 28-34, 2006.
    [94] M.J. Prins, K.J. Ptasinski and F.J.J.G. Janssen, “Torrefaction of wood: Part 2. Analysis of products,” Journal of Analytical and Applied Pyrolysis, vol. 77, no. 1, pp. 35-40, 2006.
    [95] H. Meyers and R.F. Jennings, “Charcoal ironmaking--a technical and economic review of brazilian experience,” The South East Asia Iron and Steel Institute Quarterly, vol. 8, no. 3, pp. 38-80, 1979.
    [96] Y. Ueki, R. Yoshiie, I. Naruse, K.I. Ohno, T. Maeda, K. Nishioka, and M. Shimizu, “Reaction behavior during heating biomass materials and iron oxide composites,” Fuel, vol. 104, pp. 58-61, 2013.
    [97] H. Konishi, K. Ichikawa and T. Usui, “Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets,” The Iron and Steel Institute of Japan International, vol. 50, no. 3, pp. 386-389, 2010.
    [98] I. Sohn and R.J. Fruehan, “The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part I. The role and kinetics of volatile reduction,” Metallurgical and Materials Transactions B, vol. 36, no. 5, pp. 605-612, 2005.
    [99] I. Sohn and R.J. Fruehan, “The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites,” Metallurgical and Materials Transactions B, vol. 37, no. 2, pp. 223-229, 2006.
    [100]I. Sohn and R.J. Fruehan, “The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part III. The simulation of volatile reduction in a multi-layer rotary hearth furnace process,” Metallurgical and Materials Transactions B, vol. 37, no. 2, pp. 231-238, 2006.
    [101]R.J. Fruehan, “Sustainable steelmaking using biomass and waste oxides: final technical report,” Office of Industrial Technologies, 2004.
    [102]王天明,郭培民,龐建明,王磊,趙沛,“微细粒貧赤鐵礦催化還原動力學研究,” 鋼鐵釩鈦,vol. 35,no. 5,pp. 88-92,2014。

    無法下載圖示 校內:2020-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE