| 研究生: |
黃菘斌 Huang, Song-Bin |
|---|---|
| 論文名稱: |
微流體系統建構之三維細胞培養平台及其在於藥物測試上之運用 Development of Microdfluidic Based 3-D Cell Culture Platform and its application for drug testing |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 藥物測試 、擴散式細胞培養 、三維細胞培養 、微型生物反應器 、微流體元件 |
| 外文關鍵詞: | Microbioreactors, 3-D cell culture, Microfluidic devices, Perfusion cell culture, Drug testing |
| 相關次數: | 點閱:134 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功利用微流體技術建構出微型三維細胞培養平台,並將此平台運用於測試抗癌藥物對癌細胞之影響。此三維細胞培養平台特色便是能夠提供穩定且均一之細胞培養環境,且於此平台中,發展出一種細胞/膠體注入機制,能夠將已先混合好之細胞/膠體快速且簡易注入所有細胞培養區當中且不會阻塞到其他微流道中培養液之流動,以達到高通量化三維細胞培養之目的。而此三維細胞培養平台之晶片製程步驟是以SU-8製程先建構出此平台各層之母模結構,再利用具有高生物相容性且具有良好透光性之聚二甲基矽氧烷 (PDMS: poly-dimethylsiloxane) 翻模。而在於此微型三維細胞培養平台當中,大幅減小了三維細胞培養規格尺度之大小,不僅達到減少實驗資源之消耗,更成功解決了存在於一般三維細胞培養物中之化學梯度問題。甚者,成功整合了兩種微型蠕動式幫浦於此細胞培養平台當中(包含 “蜘蛛網式微型蠕動式幫浦” 以及 “利用氣體分流機制與新式S型蠕動式幫浦” )用於細胞培養液之連續輸送,以取代傳統式之外加大型流體輸送設備,達到經濟化之效果。而發展出之細胞/膠體注入機制,更能夠大幅減少人為上操作造成各個細胞培養區中細胞膠質基注入量不同之誤差。而在於實驗結果中,顯而易見地表明出此15組微型蠕動式幫浦在於三維細胞培養平台中,能夠提供各個培養液輸送管道之流速均一性 (其流速值大小範圍(取決於外加電磁閥所給與的頻率): “蜘蛛網式微型蠕動式幫浦”輸送系統是3.6 ~ 439.0 微升/小時。“利用氣體分流機制與新式S型蠕動式幫浦” 輸送系統是5.5 ~ 131微升/小時)。而在於細胞膠質基注入機制方面,能夠利用不同壓力值施加於微型閥門上用來控制細胞/膠體注入之體積量,因此實驗結果表示當給與微型閥門壓力值為10、12、15磅/平方英吋時,便能夠得到相對應之細胞/膠體之注入體積量分別是0.22、0.18、 0.14 微升。而最後,亦將此培養平台用於人類口腔癌細胞之培養及抗癌藥物測試。
This study reports a new perfusion-based, micro three-dimensional (3-D) cell culture platform for drug testing using enabling microfluidic technologies. The platform provides the features of homogenous and well-defined culture environments, efficient medium delivery and “smart cells/ agarose (scaffold) loading mechanism”, allowing more precise and high-throughput 3-D cell culture-based assay or testing to be realized. In this work, the perfusion-based, micro 3-D cell culture platform is designed and is fabricated based on SU-8 lithography and PDMS (poly-dimethylsiloxane) replication processes. The miniaturization of the culture scale in the culture platform contributes favorably to a low chemical gradient culture environment. Also, two types of pneumatic-based medium pumping mechanisms (the “spider-web” peristaltic pneumatic micropumps system and “modified serpentine-shape” pneumatic micropump system associated with an air tank) were integrated into the micro 3-D cell culture platform to provide efficient and economical culture medium delivery mechanism. Moreover, the “smart cell/agarose (scaffold) loading mechanism” was proposed, allowing the cells/3-D scaffold loading process in one step and avoiding too much laborious works and error caused by manual loading. The results show that in all of the 15 pneumatic micropumps studied, the medium delivery mechanism is able to provide a uniform flow output ranging from 3.6 to 439.0 µl/hr for the “spider-web pneumatic micropump system” and 5.5 to 131 µl/hr for the “modified serpentine-shape” pneumatic micropump system associated with an air tank, respectively, depending on the applied pulsation frequency of the micropumps. In addition, the cell/agarose (scaffold) loading mechanism is proven to be able to perform sample loading tasks precisely and accurately in all of the 15 microbioreactors investigated with adjustable loading volumes of 0.22, 0.18 and 0.14 µl at applied air pressures of 10, 12 and 15 psi, respectively, in the microvalves. Furthermore, anti-cancer drug testing is successfully demonstrated using the proposed culture platform and fluorescent microscopic observation. As a whole, because of miniaturization, not only does this perfusion 3-D cell culture platform provide a homogenous and steady cell culture environment, but it also reduces the need for human intervention. Moreover, due to the integrated pumping of the medium and the cell/agarose (scaffold) loading mechanisms, time efficient and economical research work can be achieved. These characteristics are found particularly useful for high-precision and high-throughput 3-D cell culture-based drug testing.
[1] Maluf N., “An Introduction to Microelectromechanical Systems Engineering”, Artech House, Boston, 1, 2000.
[2] Stone H. A., Stroock A. D., and Ajdari A., “Engineering flows in small devices: microfluidics towards a lab-on-a-chip,” Annual Review of Fluid Mechanics, 36, 381-411, 2004.
[3] Vilkner T., Janasek D., and Manz A. “Micro total analysis systems. Recent developments,” Analytical Chemistry, 76, 3373–86, 2004.
[4] Squires T. M. and Quake S. R., “Microfluidics: fluid physics on the nanoliter scale,” Review of Modern Physics, 77, 977–1026, 2005
[5] Atencia J. and Beebe D. J., “Controlled microfluidic interfaces,” Nature, 437, 648–55, 2005.
[6] Haswell S. J. and Skelton V., “Chemical and Biochemical Microreactors”, Trends in Analytical Chemistry, 19, 389-395, 2000.
[7] Lien K. Y., Lee W.C., Lei H. Y., and Lee G. B., “Integrated reverse transcription polymerase chain reaction systems for virus detection,” Biosensors & Bioelectronics, 22, 1739-1748, 2007.
[8] Liao C. S., Lee G. B., Hsieh T. M., Huang F. C., Wang C. H., Fan C. L., Liu H. S., and Luo C. H., “Monitoring the cDNA Synthesis Utilizing Microfabricated Reverse Transcription Polymerase Chain Reaction Chip,” The 8th Annual Nano Engineering and MEMS conference, 2004.
[9] Lee C. Y., Lin J. L., Liao C. S., Huang F. C., and Lee G. B., “Integrated Microfluidic Systems for DNA Analysis”, IEEE International Conference on Robotics and Biomimetics, Aug. 22-25, 2004.
[10] Butler M., “Animal Cell Culture & Technology,” BIOS Scientific Publishers, 2004.
[11] Kempner M. E., and Felder R.A., “A review of cell culture automation,” JALA, 7, 56-62, 2002.
[12] Engl T., Boost K. A., Leckel K., Beecken W. D., Jonas D., Oppermann E., Auth M. K. H., Schaudt A., Bechstein W. O., and Blaheta R. A., “Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system,” Toxicology in Vitro, 18, 527-532, 2004.
[13] Lemaire F., Mandon C. A., Reboud J., Papine A., Angulo J., Pointu H., Diaz-Latoud C., Lajaunie C., Chatelain F., Arrigo, A. P. and Schaack B., “Toxicity assays in nanodrops combining bioassay and morphometric endpoints,” PloS ONE, 17, e163, 2007.
[14] Bhadriraju K. and Chen C. S., “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discovery Today, 11, 612-620, 2002.
[15] Park T. H., and Shuler M. L., “Integration of cell culture and microfabrication technology,” Biotechnology Progress, 19, 243-253, 2005.
[16] LeCluyse E. L., “Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation,” European Journal of Pharmaceutical Sciences, 13, 343-368, 2001.
[17] Ma T., Yang S. T., and Kniss D.A., “Development of an in vitro human placenta model by the cultivation of human trophoblasts in a fiber-based bioreactor system,” Tissue Engineering, 5, 91-102, 1999.
[18] Baharvand H., Hashemi S. M., Ashtiani S. K., and Farrokhi A., “Differentiation of Human Embryonic Stem Cells into Hepatocytes in 2D and 3D Culture System in vitro,’’ The International Journal of Developmental Biology, 50, 645-652, 2006.
[19] Benya P. D., and Shaffer J. D., “Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels,” Cell, 30, 215-224, 1982.
[20] Wu M. H., Urban J. P. G., Cui Z., and Cui Z. F., “Development of PDMS Microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture,” Biomedical Microdevices, 8, 331-340, 2006.
[21] Sittinger M., Schultz O., Keyszer G., Minuth W. W., and Burmester G. R., “Artificial tissues in perfusion culture,” The International Journal of Artificial Organs, 20, 57-62, 1997.
[22] Wu M. H., Urban J. P. G., Cui Z. F., Cui Z., and Xu X., “Effect of extracellular pH on matrix synthesis by chondrocytes in 3D agarose gel,” Biotechnology Progress 2007, 23, 430-434, 2007.
[23] Hung P. J., Lee P. J., Sabounchi P., Aghdam N., Lin R., and Lee L. P., “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in high throughput mammalian cell culture array,” Lab on a Chip, 5, 44-48, 2004.
[24] Gu W., Zhu X., Futai N., Cho B. S., and Takayama S., “Computerized microfluidic cell culture using elastomeric channels and braille displays,” Proceedings of the National Academy of Sciences, 9, 15861-15866, 2004.
[25] Chung B. G., Flanagan L. A., Rhee S. W., Schwartz P. H., Lee A. P., Monuki E. S., and Jeon N. L., “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, 5, 401-406, 2005.
[26] Paguirigan A., and Beebe D. J., “Gelatin based microfluidic devices for cell culture,” Lab on a Chip, 6, 407-413, 2006.
[27] Carlo D. D., Wu L. Y., and Lee L. P., “Dynamic single cell culture array,” Lab on a Chip, 6, 1445-1449, 2006.
[28] Mirzadeh H., Shokrolashi F., and Daliri M., “Effect of silicon rubber crosslink density in fibroblast cell behavior in vitro,” Journal of Biomedical Materials Research, 67A, 727-732, 2003.
[29] Lee J. N., Jiang X., Ryan D., and Whitesides G. M., “Compatibility of mammalian cells on surfaces of polydimethylsiloxane,” Langmuir, 20, 11684-11691, 2004.
[30] Charati S.G., Sterm, S.A., “Diffusion of gases in silicone polymers: molecular dynamic simulations,” Macromolecules, 31, 5529-5535, 1998.
[31] Anderson J. R., Chiu D. T., McDonald J. C., Jackman R. J., Cherniavskaya O., Wu H., Whitesides S., and Whitesides G. M., “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Analytical Chemistry, 72, 3158-3164, 2000.
[32] Kraus T., Verpoorte E., Linder V., Franks W., Hierlemann A., Heer F., Hafizovic S., Fujii T., de Rooij N. F., and Koster S. “Characterization of a microfluidic dispensing system for localized stimulation of cellular networks,” Lab on a Chip, 6, 218-229, 2006.
[33] Fujii S. I., Uematsu M., Yabuki S., Abo M., and Yoshimura E., “Microbioassay system for an anti-cancer agent test using animal cells on a microfluidic gradient mixer.” Analytical Sciences, 22, 87-90, 2006.
[34] Lee P. J., Hung P. J., Rao V. M., and Lee L. P., “Nanoliter scale microbioreactor array for quantitative cell biology,” Biotechnology and Bioengineering, 94, 5-14, 2005.
[35] De Bartolo L., Saleron S., Morelli S., Giorno L., Rende M., Memoli B., Procino A., Andreucci V. E., Bader A., and Drioli E., “Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor,” Biomaterials, 27, 4794-4803, 2006.
[36] Torisawa Y., Shiku H., Yasukawa T., Nishizawa M., and Matsue T., “Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test,” Biomaterials, 26, 2165-2172, 2005.
[37] Toh Y. C., Ng S., Khong Y. M., Samper V., Yu H., “A configurable three-dimensional microenvironment in a microfluidic channel for primary hepatocyte culture,” Assay and Drug Development Technologies, 3, 169-176, 2005.
[38] Laser D. J. and Santiago J. G., “A review of micropumps, “Journal of Micromechanics and Microengineering, 14, 35-64, 2004.
[39] Huang C. W., Lee G. B., “Microautosamplers for discrete sample injection and dispensation” Electrophoresis, 26, 1807–1813, 2005.
[40] Zeng S., Chen C. H., Mikkelsen J. C., and Santiago J. G., “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 79, 107–14, 2001.
[41] Chen C. H., and Santiago J. G., “A planar electroosmotic micropump,” Journal of Microelectronic Systems, 11, 672–683.
[42] Wang P., Chen Z. L., and Chang H. C., “A new electro-osmotic pump based on silica monoliths” Sensors and Actuators B, 113, 500–509, 2006.
[43] Brask A, Kutter J. P., and Bruus H., “Long-term stable electroosmotic pump with ion exchange membranes” Lab on a Chip, 5, 730–738, 2005.
[44] Tripp J. A., Svec F., Frechet J. M. J., Zeng S. L., Mikkelsen J. C., and Santiago J. G. “High-pressure electroosmotic pumps based on porous polymer monoliths,” Sensors and Actuators B, 99, 66–73, 2004.
[45] Van Lintel H. T. G., Van de Pol F. C. M., and Bouwstra S., “A piezoelectric micropump based on micromachining of silicon,” Sensors and Actuators A, 15, 153–167, 1988.
[46] Van De Pol F. C. M., Van Lintel H. T. G., Elwenspoek M., and Fluitman J. H. J., “Thermopneumatic micropump based on microengineering technique,” Sensors and Actuators A, 21, 198-202, 1990.
[47] Tang W. C., Nguyen T. C. H., and Howe R. T., “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators A, 20, 25-32, 1989.
[48] Zhang W., Ahn C. H., “A bidirectional magnetic micropump on a silicon wafer,” IEEE Solid-State Sensor and Actuator Workshop 1996 Technical Digest, 94-97, 1996.
[49] Unger M. A., Chou H. P., Thorsen T., Scherer A., Quake S. R., “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, 288, 113-116, 2000.
[50] Wang, C. H., Lee, G. B., “Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection,” Biosensors and Bioelectronics, 21, 419-425, 2005.
[51] Wang C. H., Lee G. B., “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, 16, 341-348, 2006.
[52] Wu Z., Xanthopoulos N., Reymond F., Rossier, J. S., and Girault H. H., “Polymer microchips bonded by O2-plasma activation,” Electrophoresis, 23, 782-790, 2002.
[53] Efimenko K., Wallace W. E., and Genzer J., “Surface modification of Sylgard-184 polydimethylsiloxane networks by ultraviolet and ultraviolet/ozone treatment,” Journal of Colloid and Interface Science, 254, 306-315, 2002.
[54] Houston K. S., Weinkauf D. H., Stewart F. F., “Gas Transport Characteristics of Plasma Treated Poly(dimethylsiloxane) and Polyphosphazene Membrane Materials,” Journal of Membrane Science, 205, 103-112, 2002.
[55] Freij-Larsson C., Nylander T., Jannasch P., and Wesslen B., “Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: effect on protein adsorption,” Biomaterials, 17, 2199-2207, 1996.
[56] Higuchia A., Sugiyamaa K., Yoona B. O., Sakuraib M., Haraa M., Sumitac M., Sugawarac M., and Shirai T., “Serum protein adsorption and platelet adhesion on pluronict-adsorbed polysulfone membranes,” Biomaterials, 24, 3235–3245, 2003.
[57] Leclerc E., Sakai Y., Fujii T., “Cell Culture in 3-dimensional Microfluidic Structure of PDMS (Polydimethylsiloxane),” Biomedical Microdevices, 5, 109-114, 2003.
[58] Zhu Z., Matthews I. P., Wang C., “Gas Dynamics of Ethylene Oxide During Sterilization,” Review of Scientific Instruments, 70, 3150-3155, 1999.
[59] Anderson R. D., Berger N. A., “Mutagenicity and carcinogenicity of topoisomerase-interactive agents,” Mutation Research, 309, 109-142, 1994.
[60] Olinsji R., Jaruga P., Foksinski M., Bialkowski K., and Tujakowski J., “Epirubicin-induced oxidative DNA damage and evidence for its repair in lymphocytes of cancer patients who are undergoing chemotherapy,” Molecular Pharmacology, 52, 882-885, 1997.