簡易檢索 / 詳目顯示

研究生: 張以謙
Chang, Yi-Chien
論文名稱: 透過精準控制以MAI為媒介的配體交換浸泡時間來突破硫化鉛量子點薄膜的熱電性質
High thermoelectric performance in PbS quantum dots thin films by precisely controlling MAI-mediated ligand exchange immersions duration
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 103
中文關鍵詞: 硫化鉛量子點配體交換超晶格熱電碘離子
外文關鍵詞: PbS QDs, ligand exchange, thermoelectric, superlattice, suface chemistry
相關次數: 點閱:64下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生活周遭的熱能無所不在,舉凡太陽熱能、電子產品、工廠、汽機車產業抑或是人體都是熱的發源體,以往這些熱能就被散逸到大氣環境中而消失了,而熱電材料的其中一個特性即能將這些廢熱回收並且轉換成可以利用的電能的有效方法。本研究主題為透過硫化鉛量子點為主體,因其擁有眾多優點例如低熱導率、高席貝克係數、具有很大的波爾激子半徑、可調控的能隙、低成本的液體低溫製程等等。然而,合成之初的硫化鉛量子點表面具有絕緣性的油酸配體,會影響薄膜的電性,因此本研究透過精準的調控配體交換的時間,以碘離子置換掉量子點表面的油酸配體,藉以使得席貝克係數以及導電率大幅提升至-312.6μV/K以及49.56 S/cm,因而使功率因子達到484.92μW/mK2,且使熱電薄膜之ZT值達到0.142,相比於目前的已知文獻,功率因子進而從15.73μW/mK2提升至484.92μW/mK2,其主要的優勢在於精準調控量子點間的距離以及排列,來最佳化載子在量子點間的傳輸,並且透過最大化量子點表面上的碘離子,來達到最穩定的量子點特性,以避免氧化物在量子點表面形成,進而影響薄膜的電性。
    在機制探討上,透過FTIR來確定配體交換成功移除表面的油酸配體;並透過UV-Vis-NIR和橢偏儀來確定配體交換完成的時間以及薄膜的光學特性和薄膜厚度的變化;透過XPS來查看硫酸鉛量子點表面的氧化情形以及得知配體交換後處理不但會移除量子點表面的油酸配體,還會移除已經交換上去的碘離子,進而發現配體交換後處理並非越久越好;透過GISAXS/GIWAXS來研究量子點堆疊的結構,並發現配體交換後處理會促使量子點排列的超晶格結構從FCC轉變成BCT,且定量計算晶格扭曲的情形以及量子點間的距離,而得到配體交換後處理會打亂原本量子點的排列的結論;透過laser flash來量測薄膜的熱導率,並發現了多層膜可以降低薄膜的熱導率;透過SEM/TEM檢視量子點堆疊的結構、量子點間距、量子點的形狀及此寸、量子點平面間距、膜況、薄膜厚度等等資訊,最終可以證明精準定量配體交換後處理的時間,才能得到最佳的量子點排列結構,最大化量子點表面的碘離子,最大化油酸配體的移除,以得到最佳的熱電特性表現。

    Lead sulfide (PbS) quantum dots (QDs) are promising zero-dimensional materials for contructing n-type thermoelectric applications because of their low-cost solution processability and high potential for self-powered applications. However, the nature of low electrical conductivity arising from the existence of insulating oleate ligands in PbS surfaces critically stands against the enhancement of the thermoelectric power factor. Herein, in this work, PbS QDs with oleate ligands thin film were optimally treated with methylammonium iodide (MAI) counterion in methanol under different immerse durations. We found that the protic solvent, methanol, could largely remove the insulating oleate ligands, which promote bond formation between iodide ions and PbS QDs surfaces. This can highly improve the air-stability of QDs, which can avoid oxide formation. By precisely controlling this ligand exchange immersion time, optimal QDs superlattice structure and interdot spacing can be achieved. Futhermore, electronic coupling within PbS-based thermoelectric films is also greatly promoted, which in-turn improves the electrical conductivity. Through optimization of iodide ligand exchange, the Seebeck coefficient and the electrical conductivity of thin films are substantially improved to -312.6 μV/K and 49.56 S/cm, respectively. Such improvement enables to achieve a high thermoelectric power factor of 484.29 μW/mK2, which is approximately 20.17 times higher other PbS-based thermoelectric devices.

    摘要 I Extended Abstract II 誌謝 X 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 4 2.1 熱電效應 4 2.1.1 席貝克效應 (Seebeck effect) 4 2.1.2 帕爾帖效應 (Peltier effect) 5 2.1.3 湯姆森效應 (Thomson effect) 7 2.1.4 熱電優值 (Thermoelectric figure of merit, ZT) 8 2.2 n-type熱電材料 9 2.2.1 共軛聚合物 (Conjugated Polymers) 9 2.2.2 金屬-有機配位聚合物 (Metal–organic coordination polymers) 9 2.2.3 高分子複合材料 (Polymer-Based Composites) 10 2.2.4 量子點材料 (quantum dots) 11 2.3 硫化鉛量子點 (Lead sulfide quantum dots) 13 2.4 配體交換後處理 (Ligand exchange) 15 2.4.1 配體交換的種類 (Types of Ligand Exchange) 16 2.4.2 配體的種類 (Types of Ligand) 16 2.4.3 鹵素配體的種類 (Types of halide ligand) 18 2.4.4 碘鹽反離子種類 (Types of iodide salts with different counterions) 18 2.4.5 溶劑種類 (Types of solvent) 19 2.5 最佳化PbS QDs薄膜熱電性質之方法 20 2.6 研究動機 20 第三章 儀器設備與實驗流程 21 3.1 研究流程圖 21 3.2 實驗藥品與材料 22 3.3 實驗儀器 23 3.3.1 精密天平 (Precision Balances) 23 3.3.2 數位型電磁加熱攪拌機 (Heating Panel) 23 3.3.3 旋轉塗佈機 (Spin coater) 23 3.3.4 超音波震盪機 (Ultrasonic Cleaner) 23 3.3.5 低溫循環水槽 (Low Temperature Water Bath) 23 3.3.6 離心機 (Centrifuge) 23 3.4 實驗步驟與熱電性質量測方法 24 3.4.1 基板的製備 24 3.4.2 硫化鉛量子點的合成 (Synthesis of PbS QDs) 24 3.4.3 硫化鉛量子點的清洗 (Cleaning PbS QDs) 24 3.4.4 硫化鉛量子點薄膜的製備 25 3.4.5 熱電性質量測方法 27 3.5 材料分析儀器 29 3.5.1 電壓電流量測系統 (I-V Measurement System) 29 3.5.2 四點探針 (Four-point Probe) 29 3.5.3 高解析場發射掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope , HR-SEM) 30 3.5.4 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 31 3.5.5 傅立葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 32 3.5.6 可變角度橢圓偏光儀 (Variable Angle Spectroscopic Ellipsometry, VASE) 33 3.5.7 高解析度穿透式電子顯微鏡 (High resolution transmission electron microscop, HR-TEM) 34 3.5.8 紫外光/可見光/近紅外光分光光譜儀 (Ultraviolet/Visible/Near Infrared Spectroscopy, UV/VIS/NIR) 34 3.5.9 雷射閃射分析儀 (Laser Flash analysis for thin films, TF-LFA) 35 3.5.10 低掠角小角/廣角X光散射 (Grazing-Incidence Small-Angle/Wide-Angle X-ray Scattering, GISAXS/GIWAXS) 36 第四章 結果與討論 37 4.1 材料性質分析 37 4.1.1 傅立葉轉換紅外線光譜儀分析 (FTIR analysis) 37 4.1.2 紫外光/可見光/近紅外光分光光譜儀分析 (UV/Vis/NIR analysis) 40 4.1.3 可變角度橢圓偏光儀分析 (VASE analysis) 43 4.1.4 X光光電子能譜儀分析 (XPS analysis) 48 4.1.5 低掠角小角/廣角X光散射分析 (GISAXS/GIWAXS analysis) 62 4.1.6 能量散射X射線譜分析 (EDS analysis) 83 4.1.7 高解析場發射掃描式電子顯微鏡分析 (HR-SEM analysis) 85 4.1.8 高解析度穿透式電子顯微鏡分析 (HR-TEM analysis) 88 4.1.9 雷射閃射分析儀分析 (TF-LFA analysis) 89 4.2 薄膜熱電性質分析 92 4.2.1 1000rpm之一層thin film進行配體交換後處理的席貝克係數分析 92 4.2.2 1000rpm之一層thin film進行配體交換後處理的導電率分析 94 4.2.3 1000rpm之一層thin film進行配體交換後處理的功率因子分析 95 4.2.4 1000rpm之一層thin film進行配體交換後處理的ZT值分析 96 第五章 結論 97 第六章 未來展望 98 參考文獻 99

    [1] Nugraha, M. I., et al. (2019). "Low‐temperature‐processed colloidal quantum dots as building blocks for thermoelectrics." Advanced Energy Materials 9(13): 1803049.
    [2] Nugraha, M. I., et al. (2019). "Highly Passivated n‐Type Colloidal Quantum Dots for Solution‐Processed Thermoelectric Generators with Large Output Voltage." Advanced Energy Materials 9(28): 1901244.
    [3] Wang, R., et al. (2016). "Colloidal quantum dot ligand engineering for high performance solar cells." Energy & Environmental Science 9(4): 1130-1143.
    [4] Kong, L. B., et al. (2014). Waste energy harvesting: Mechanical and thermal energies, Springer Science & Business Media.
    [5] Rowe, D. M. (2018). CRC handbook of thermoelectrics, CRC press.
    [6] Korotcenkov, G., et al. (2018). "In2O3-based thermoelectric materials: the state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion." Crystals 8(1): 14.
    [7] Meng, B., et al. (2021). "Recent development of n-type thermoelectric materials based on conjugated polymers." Nano Materials Science 3(2): 113-123.
    [8] Sun, Y., et al. (2019). " organic thermoelectric materials and devices." Advanced Electronic Materials 5(11): 1800825.
    [9] Wang, H., et al. (2015). "Thermally driven large n‐type voltage responses from hybrids of carbon nanotubes and poly (3, 4‐ethylenedioxythiophene) with tetrakis (dimethylamino) ethylene." Advanced Materials 27(43): 6855-6861.
    [10] Zuo, G., et al. (2018). "High Seebeck coefficient and power factor in n‐type organic thermoelectrics." Advanced Electronic Materials 4(1): 1700501.
    [11] Weidman, M. C., et al. (2014). "Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control." ACS nano 8(6): 6363-6371.
    [12] Moreels, I., et al. (2009). "Size-dependent optical properties of colloidal PbS quantum dots." ACS nano 3(10): 3023-3030.
    [13] Malgras, V., et al. (2015). "The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application." Nanoscale 7(13): 5706-5711.
    [14] Beygi, H., et al. (2018). "Surface chemistry of as-synthesized and air-oxidized PbS quantum dots." Applied Surface Science 457: 1-10.
    [15] Tang, J., et al. (2010). "Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability." ACS nano 4(2): 869-878.
    [16] Wang, Y., et al. (2018). "In situ passivation for efficient PbS quantum dot solar cells by precursor engineering." Advanced Materials 30(16): 1704871.
    [17] Zherebetskyy, D., et al. (2014). "Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid." Science 344(6190): 1380-1384.
    [18] Ahmed, F., et al. (2021). "A p-type PbS quantum dot ink with improved stability for solution processable optoelectronics." Chemical Communications 57(65): 8091-8094.
    [19] Ip, A. H., et al. (2012). "Hybrid passivated colloidal quantum dot solids." Nature nanotechnology 7(9): 577-582.
    [20] Weidman, M. C., et al. (2015). "Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange." Chemistry of Materials 27(2): 474-482.
    [21] Kim, S., et al. (2014). "One-step deposition of photovoltaic layers using iodide terminated PbS quantum dots." The journal of physical chemistry letters 5(22): 4002-4007.
    [22] Balazs, D. M., et al. (2015). "Counterion-mediated ligand exchange for PbS colloidal quantum dot superlattices." ACS nano 9(12): 11951-11959.
    [23] Kirmani, A. R., et al. (2014). "Effect of solvent environment on colloidal‐quantum‐dot solar‐cell manufacturability and performance." Advanced Materials 26(27): 4717-4723.
    [24] Hines, M. A. and G. D. Scholes (2003). "Colloidal PbS nanocrystals with size‐tunable near‐infrared emission: observation of post‐synthesis self‐narrowing of the particle size distribution." Advanced Materials 15(21): 1844-1849.
    [25] Baek, S. J., et al. (2003). "Spectroscopy and dynamics of methylamine. I. Rotational and vibrational structures of CH 3 NH 2 and CH 3 ND 2 in à states." The Journal of chemical physics 118(24): 11026-11039.
    [26] Baek, S. J., et al. (2003). "Spectroscopy and dynamics of methylamine. II. Rotational and vibrational structures of CH 3 NH 2 and CH 3 ND 2 in cationic D 0 states." The Journal of chemical physics 118(24): 11040-11047.
    [27] Brancaleon, L., et al. (2001). "Attenuated total reflection–Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo." Journal of Investigative Dermatology 116(3): 380-386.
    [28] Chai, M. and M. Isa (2013). "The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte."
    [29] Foucaud, Y., et al. (2021). "Adsorption mechanisms of fatty acids on fluorite unraveled by infrared spectroscopy and first-principles calculations." Journal of Colloid and Interface Science 583: 692-703.
    [30] Ibarra, J., et al. (2015). "Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles." Materials Research Express 2(9): 095010.
    [31] Smith, B. C. (2018). "The Carbonyl Group, Part V: Carboxylates—Coming Clean." Spectroscopy 33(5): 20–23-20–23.
    [32] Sztraka, L., et al. (1997). "Irregularity in the high resolution wagging band of methylamine." Journal of molecular structure 410: 391-395.
    [33] Uznanski, P., et al. (2017). "Synthesis and characterization of silver nanoparticles from (bis) alkylamine silver carboxylate precursors." Journal of Nanoparticle Research 19: 1-20.
    [34] Diroll, B. T., et al. (2015). "Spectrally-resolved dielectric functions of solution-cast quantum dot thin films." Chemistry of Materials 27(18): 6463-6469.
    [35] Hechster, E. and G. Sarusi (2017). "Modeling the PbS quantum dots complex dielectric function by adjusting the Ek diagram critical points of bulk PbS." Journal of Applied Physics 122(2): 024302.
    [36] Cant, D. J., et al. (2015). "Surface properties of nanocrystalline PbS films deposited at the water–oil interface: a study of atmospheric aging." Langmuir 31(4): 1445-1453.
    [37] Choi, J. J., et al. (2011). "Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage." Journal of the American Chemical Society 133(9): 3131-3138.
    [38] Zheng, Z., et al. (2005). "In situ growth of epitaxial lead iodide films composed of hexagonal single crystals." Journal of Materials Chemistry 15(42): 4555-4559.
    [39] Zingg, D. and D. M. Hercules (1978). "Electron spectroscopy for chemical analysis studies of lead sulfide oxidation." The Journal of Physical Chemistry 82(18): 1992-1995.
    [40] Corricelli, M., et al. (2014). "GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices." CrystEngComm 16(40): 9482-9492.
    [41] Bian, K., et al. (2011). "Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs." ACS nano 5(4): 2815-2823.
    [42] Chen, W., et al. (2019). "Structure and charge carrier dynamics in colloidal PbS quantum dot solids." The journal of physical chemistry letters 10(9): 2058-2065.
    [43] Saxena, V. and G. Portale (2020). "Contribution of Ex-Situ and In-Situ X-ray Grazing Incidence Scattering Techniques to the Understanding of Quantum Dot Self-Assembly: A Review." Nanomaterials 10(11): 2240.
    [44] Hanrath, T., et al. (2009). "Structure/processing relationships of highly ordered lead salt nanocrystal superlattices." ACS nano 3(10): 2975-2988.
    [45] Weidman, M. C., et al. (2018). "Impact of size dispersity, ligand coverage, and ligand length on the structure of PbS nanocrystal superlattices." Chemistry of Materials 30(3): 807-816.
    [46] Maiti, S., et al. (2018). "Monitoring self-assembly and ligand exchange of PbS nanocrystal superlattices at the liquid/air interface in real time." The journal of physical chemistry letters 9(4): 739-744.
    [47] Cröll, A., et al. (2017). "Anisotropic and temperature-dependent thermal conductivity of PbI2." Journal of Crystal Growth 466: 16-21.
    [48] Wu, H., et al. (2014). "Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics." NPG Asia Materials 6(6): e108-e108.
    [49] Suganya, G., et al. (2022). "Investigation of electronic structure, electrical and thermal properties of PbS quantum dots for thermoelectric applications." Materials Science in Semiconductor Processing 148: 106789.
    [50] Ibanez, M., et al. (2013). "Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe–PbS thermoelectric properties." ACS nano 7(3): 2573-2586.
    [51] Sun, L., et al. (2019). "Polarization Effect of MoO3 Increases the Thermoelectric Properties Based on the PbS Quantum-Dots Doped P3HT Devices." ACS Applied Polymer Materials 1(5): 1054-1060.
    [52] Nugraha, M. I., et al. (2021). "Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films." ACS Applied Materials & Interfaces 13(16): 18999-19007.
    [53] Ibánez, M., et al. (2016). "High-performance thermoelectric nanocomposites from nanocrystal building blocks." Nature communications 7(1): 10766.
    [54] Du, X., et al. (2018). "Effects of anion and cation doping on the thermoelectric properties of n-type PbS." Journal of the European Ceramic Society 38(10): 3512-3517.
    [55] Jin, R., et al. (2012). "Hydrothermal synthesis and thermoelectric transport property of PbS–PbTe core–shell heterostructures." New Journal of Chemistry 36(12): 2574-2579.
    [56] Ortega, S., et al. (2014). "Bottom-up processing of PbTe-PbS thermoelectric nanocomposites." International journal of nanotechnology 11(9-1011): 955-970.
    [57] Kim, J. H., et al. (2018). "A lightweight scalable agarose-gel-synthesized thermoelectric composite." Materials Research Express 5(3): 035031.
    [58] Ibáñez, M., et al. (2019). "Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks." ACS nano 13(6): 6572-6580.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE