簡易檢索 / 詳目顯示

研究生: 龍妍妗
Liang, Betty Yan Jin
論文名稱: 以膠體合成法製備硫化錫奈米結構及其應用於太陽能電池吸收層之研究
Synthesis of Tin (II) Sulfide nanostructures by using colloidal synthesis technique and the properties for solar cell application
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 王聖璋
Wang, Sheng-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 131
中文關鍵詞: 膠體合成法硫化錫奈米晶體硫化錫薄膜太陽能電池吸收層
外文關鍵詞: Colloidal synthesis technique, SnS nanocrystals, SnS films, solar cells absorber layer
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,吾人以不同的反應溫度與硫酸溶劑體積合成出不同尺寸的硫化錫(SnS)奈米晶粉末。其中,上述之硫化錫奈米晶結構係以氧化錫(SnO)與不同濃度之油酸(oleic acid)先行製備Sn(OA)x前驅物,再分別在150 °C、 180 °C、 210 °C 、250 °C以及310 °C下注入硫粉(S)及不同類型的表面活性劑為油酸及油胺,於氬氣氣氛中進行熱裂解法製備硫化錫奈米晶體粉末。接著,將上述之硫化錫奈米晶體粉末以旋轉塗佈法旋鍍於ITO玻璃上行成硫化錫薄膜並探討該薄膜應用於太陽能電池吸收層上之可行性。最後,以X光繞射分析儀、掃描式電子顯微鏡、穿透式電子顯微鏡、光激螢光光譜儀、拉曼光譜儀、紫外光/可見光光譜儀、四點探針與兩點探針分別分析所製備之硫化錫奈米晶體粉末與硫化錫薄膜之微結構、光學與電特性。分析結果顯示:硫化錫奈米晶體粉末與硫化錫薄膜皆屬於正交晶結構,且隨著反應溫度之提升,硫化錫奈米晶體之平均粒徑大小會隨著增加,分別為30 nm 、50 nm、1.5 μm、2 μm 與1μm。且,當硫酸溶劑的體積增加時,正方晶結構之SnO會漸漸地轉變為正交晶結構之SnS。值得注意的是,當反應溫度增加時,上述之奈米晶體的形狀會逐漸地改變,由球狀轉變為六方片狀,最後轉變為方形片狀貌。由PL光譜儀得知,硫化錫薄膜在230 nm激發波長下會發射471 nm (藍光) 、413 nm (UV光),與較弱的454 nm (藍光)波段。根據拉曼光譜分析得知,所有的硫化錫奈米晶體粉末與硫化錫(SnS)薄膜皆具有Ag 模態,其峰值分別坐落於屬於Sn2S3參考光譜之62 、225 、 303、304、306 與 310 cm-1。紫外光/可見光光譜分析得知,在波段約1000 nm 左右硫化錫薄膜會有一個強烈的吸收峰,且所有的硫化錫薄膜之吸收範圍為979 nm 至 1014 nm之間。最重要的是,所有的硫化錫薄膜吸收範圍均涵蓋紫外光、可見光與紅外光,此特性更顯得本論文所製備之硫化錫薄膜係為比CdSe奈米粒子還具有相當潛力的吸收材料。此外,硫化錫薄膜之光學直接能隙在180 °C時為1.22 eV 、在210 °C時為1.25 eV、在250 °C時為1.24 eV以及在310 °C時為1.23 eV。硫化錫薄膜之光學間接能隙在180 °C時為1.06 eV 、在210 °C時為1.13 eV以及在250 °C與310 °C時皆為1.12 eV。最後,電性量測結果顯示單晶硫化錫奈米片狀 (0.217 Ω-cm)之電阻率低於硫化錫薄膜 (103 – 108 Ω-cm)。此結果證明SnS奈米片狀擁有較佳之電性並可能應用於太陽能電池上。

    In this thesis, various sizes of tin sulfide (SnS) nanocrystalline powders under different reaction temperature and volume of the oleic acid (OA) solvent was synthesized. These nanocrystalline powders were synthesized using a tin-oleate complexes precursor, Sn(OA)x prepared by tin oxide (SnO) with different moles of oleic acid and mixture of sulfur and oleylamine (OLA) were injected into the solution of tin-oleate complexes precursor, Sn(OA)x mentioned above at different temperatures under argon atmosphere using colloidal synthesis technique. Next, the SnS powders were coated on ITO (Indium Tin Oxide) glass to form SnS films by spin coater and subsequently the properties for solar cell applications were investigated. Finally, the microstructure, optical and electrical properties of the as-prepared SnS nanocrystalline powders and films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), photoluminescence measurement, raman spectroscopy, UV-visible spectroscopy, four points probe and two points probe measurement.
    The analysis results showed that the SnS nanocrystalline powders were orthorhombic crystal structure, and the average particle sizes were increased from 30 nm to 50 nm, 1.5 μm, 2 μm and 1μm with increased in temperature from 150 °C to 180 °C, 210 °C, 250 °C and 310 °C, respectively. Also, changed of tetragonal SnO crystals to orthorhombic SnS nanocrystals were observed as the volume of OA solvent increased. Careful observations indicated a gradual change in the shape of these nanocrystals from spherical to sheet-like structure and finally to square sheet-like structure with the increased of the reaction temperature (150 °C – 310 °C). Photoluminescence measurement showed that SnS films displayed two strong emission bands centered at 471 nm (blue emission) and at 413 nm (UV emission), respectively and a weak emission bands existed at 454 nm (blue emission) with excitation wavelength of 230 nm. On the other hand, all the SnS films owned the Ag mode of SnS at the band around 162 and 225 cm-1 and a weak peak at 303, 304, 306 and 310 cm-1, which corresponded to the raman reference spectrum of Sn2S3 as observed in Raman spectroscopy. Besides, the optical properties of SnS films found that there was a strong absorption in the wavelength of about 1000 nm. The onset absorption for all the SnS films were in the range of 979 nm to 1014 nm and the absorption range covered the whole spectrum of ultraviolet, visible and infrared spectra, making SnS potentially better absorber materials than the commonly used CdSe nanoparticles. Additionally, the direct optical band gap is estimated to be 1.22 eV for 180 °C SnS films, 1.25 eV for 210 °C SnS films, 1.24 eV for 250 °C SnS films and 1.23 eV for 310 °C SnS films, respectively, while the indirect band gap of the SnS films is 1.06 eV for 180 °C films, 1.13 eV for 210 °C SnS films and 1.12 eV for both 250 and 310 °C SnS films, respectively. Lastly, the resistivity of the single crystalline SnS nanosheet (0.217 Ω·cm) was found to be lower than that of SnS films (103 – 108 Ω·cm). The result proved that single crystalline SnS nanosheet has good electrical property and is potentially to be applied in solar cells.

    Abstract..................................................I Acknowledgement...........................................V Table Captions............................................XI Figure Captions...........................................XII Chapter 1: Introduction...................................1 1.1 Introduction of Solar Cell and Photovoltaic Cells.1 1.2 Nanocrystal Photovoltaics.........................2 1.3 Tin Monosulfide as Tin-based Absorbers............5 1.4 Objectives........................................6 1.5 Motivations.......................................6 Chapter 2: Theory and Literature Reviews..................9 2.1 Introduction on Nanomaterials.....................9 2.2 Bottom-Up and Top-Down Approaches.................9 2.3 Ostwald Ripening..................................11 2.4 Mechanism of Nanoparticle Formation...............12 2.4.1 Nucleation Mechanisms.............................16 2.4.2 Growth Mechanisms.................................17 2.5 Strategies for Size and Shape Control.............21 2.5.1 Control at the Nucleation Step....................21 2.5.2 Control at the Growth Step........................22 2.6 Various Synthetic Routes for Nanocrystals.........23 2.6.1 Reduction.........................................23 2.6.2 Nonhydrolytic Sol-Gel Methods.....................24 2.6.3 Precipitation of Salts in Aqueous Medium..........27 2.6.4 Hydrothermal Synthesis............................27 2.6.5 Microemulsions....................................27 2.6.6 Aerosol Pyrolysis.................................28 2.6.7 Thermal Decomposition Methods.....................29 2.7 Characteristic of Semiconductor Nanomaterials.....35 2.7.1 Quantum Size Effect and Luminescence Properties...35 2.7.2 Electrical Properties.............................39 2.8 Solar Cell Absorber Material......................39 2.9 Introduction on Tin Sulfide.......................40 2.10 Literature Reviews on SnS Nanostructures and Fims..............................................44 2.10.1 0D Structure (Nanoparticles)......................44 2.10.2 1D Structure (Nanorods, Nanowires, Nanotubes).....46 2.10.3 2D and 3D Structure (Microbelts, Nanoflakes, Nanosheets).......................................47 Chapter 3: Experimental Procedure.........................49 3.1 Experimental Procedure............................49 3.1.1 Part I: Synthesis of SnS Nanocrystals.............49 3.1.2 Part II: Fabrication of SnS Films.................50 3.2 Measurement System................................54 3.2.1 X-ray Diffraction (XRD)...........................54 3.2.2 Scanning Electron Microscopy (SEM)................55 3.2.3 Transmission Electron Microscopy (TEM)............59 3.2.4 Energy Dispersion X-ray Spectrometer (EDX)........62 3.2.5 UV-visible Spectroscopy...........................62 3.2.6 Photoluminescence (PL)............................62 3.2.7 Raman Spectroscopy................................66 3.2.8 Electrical Measurement............................70 Chapter 4: Results and Discussion.........................72 4.1 Synthesis of SnS Nanocrystals (Part I)............72 4.1.1 Structure and Phase Composition Analysis..........72 4.1.2 Microstructure and Composition Analysis...........81 4.2 Fabrication of SnS films (Part II)................100 4.2.1 Structure and Phase Composition Analysis..........100 4.2.2 Surface Morphology Characteristic.................102 4.2.3 Optical Properties Analysis.......................104 4.2.4 Photoluminescence Studies.........................108 4.2.5 Raman Analysis....................................110 4.2.6 Electrical Properties Analysis....................112 Chapter 5: Conclusion.....................................117 Chapter 6: Future Works...................................119 References................................................120

    [1] S.J. Kim, “Nanostructured Photovoltaic Devices for Next Generation Solar Cell”, Doctor of Philosophy, Department of Electrical Engineering, State University of New York at Buffalo, (2008).
    [2] Schlesinger, S. H. Schneider, R. G. Watts, T. M. L. Wigley, D. J. Wuebbles, Nature 395 (1998) 881.
    [3] "Basic Research needs for Solar Energy Utilization" Report on the basic energy Sciences Workshop on Solar Energy Utilization, April 18-21 (2005).
    [4] H.W. Hillhouse, M.C. Beard, Curr. Opin. Colloid. Interface Sci. 14 (2009) 245.
    [5] X.Wu, Sol. Energy 77 (2004) 803.
    [6] M. Bar, I. Repins, M.A. Contreras, L. Weinhardt, R. Noufi, C. Heske, Appl. Phys. Lett. 95 (2009) 052106.
    [7] M.G. Panthani, B.A. Korgel, Nanocrystals for Electronics, Annu. Rev. Chem. Biomol. Eng. 3 (2012) 287.
    [8] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270 (1995) 1789.
    [9] B. Sun, E. Marx, N.C. Greenham, Nano Lett. 3 (2003) 961.
    [10] I. Gur, N.A. Fromer, C.P. Chen, A.G. Kanaras, A.P. Alivisatos, Nano Lett. 7 (2007) 409.
    [11] V.A. Akhavan, M.G. Panthani, B.W. Goodfellow, D.K. Reid, B.A. Korgel, Opt. Express 18 (2010) 411.
    [12] X. Wang, G.I. Koleilat, J. Tang, H. Liu, I.J. Kramer, et al., Nat. Photonics 5 (2011) 480.
    [13] J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, J. Am. Chem. Soc. 133 (2010) 716.
    [14] M. Devika, K.T.R. Reddy, N.K. Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, K.R. Gunasekhar, J. Appl. Phys. 100 (2006) 023518.
    [15] A. Walsh, G.W. Watson, J. Phys. Chem., 109 (2005) 18868.
    [16] USGS http://minerals.usgs.gov/minerals/pubs/commodity/tin/mcs-2011-tin.pdf (Accessed Dec 9th 2011).
    [17] USGS http://minerals.usgs.gov/minerals/pubs/commodity/selenium/mcs-2011-tellu.pdf (Accessed Dec. 9th 2011).
    [18] USGS http://minerals.usgs.gov/minerals/pubs/commodity/indium/mcs-2011-indiu.pdf (Accessed Dec. 9th 2011).
    [19] R. Chandrasekharan, “Numerical Modeling of Tin-based Absorber Devices for Cost-effective Solar Photovoltaics”, Doctor of Philosophy, Department of Energy and Mineral Engineering, The Pennysylvania State University, (2102).
    [20] P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1 (2011) 1116.
    [21] Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Colloids Surf., A: Physicochem. Eng. Aspects 364 (2006) 284.
    [22] A.M. Caminade, J.P. Majoral, Acc. Chem. Res. 37 (2004) 341.
    [23] M.C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.
    [24] P. Tatiana, Y.A. LOginova, S.N. Kabachii, D.N. Sidorov, P.M. Zhirov, M.G. Valetsky, L.V. Ezernitskaya, T.P. Dybrovina, O.L. Bragina, B.S. Lependina, M.B. Lyudmila, Chem. Mater. 16 (2004) 2369.
    [25] X.L. Gou, J. Chen, P.W. Shen, Mater. Chem. Phys. 93 (2005) 557.
    [26] L.C. Brian, L.K. Vladimir, J.O. Charles, Chem. Rev. 104 (2004) 3893.
    [27] P. O’Brien, L.N. Pichett, Chem. Mater. 13 (2001) 3843.
    [28] G. Cao, “Nanostructures and Naomaterials (Synthesis, Properties, and Applications)”, Imperial College Press, (2004).
    [29] H.G. Yang, H.C. Zeng, J. Phys. Chem. B 108 (2004) 3492.
    [30] B. Liu, H.C. Zeng, Small 1 (2005) 566.
    [31] W.Z. Ostwald, Phys. Chem. 22 (1897) 289.
    [32] W.Z. Ostwald, Phys. Chem. 34 (1900) 495.
    [33] Y. Chang, J.J. Teo, H.C. Zeng, Langmuir 21 (2005) 1074.
    [34] J.J. Teo, Y. Chang, H.C. Zeng, Langmuir 22 (2006) 7369.
    [35] V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72 (1950) 4847.
    [36] G. Salas, R. Costo, M.d.P. Morales, Frontiers of Nanoscience 4 (2012) 35.
    [37] D.H. Everett, “Basic principles of colloid science”, London: Royal Society of Chemistry, (1988).
    [38] S.G.J.M. Kluijtmans, J.K.G. Dhont, A.P. Philipse, Langmuir 13 (1997) 4976.
    [39] J.W. Cahn, J.E. Hilliard, Acta Metal 19 (1971) 151.
    [40] J.A. Dirksen, T.A. Ring, Chem. Eng. Sci. 46 (1991) 2389.
    [41] R. Viswanatha, P. Santra, C. Dasgupta, D. Sarma, Phys. Rev. Lett. 98 (2007) 98.
    [42] M. Ocan˜a, R. Rodriguez-Clemente, C.J. Serna, Adv. Mater. 7 (1995) 212.
    [43] M.P. Morales, T. Gonza´lez-Carren˜o, C.J. Serna, J. Mater. Res. 7 (1992) 2538.
    [44] A. Philipse, “Particulate colloids: aspects of preparation and characterization. In: J. Lyklema”, Fundamentals of interface and colloid science, London, Elsevier Ltd. 4, Chapter 2 (2005) 2.1.
    [45] J. Lee, T. Isobe, M. Senna, J. Colloid. Interface Sci. 177 (1996) 490.
    [46] M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L.I. Casas, Chem. Mater. 11 (1999) 3058.
    [47] P.D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 35 (2006) 1195.
    [48] J. Cheon, N.J. Kang, S.M. Lee, J.H. Lee, J.H. Yoon, S.J. Oh, J. Am. Chem. Soc. 126 (2004) 1950.
    [49] A.R. Tao, S. Habas, P. Yang, Small 4 (2008) 310.
    [50] a) G. Herzer, IEEE Trans. 1989, MAG-25, 3327; b) I. Skorvanek, R. C. OIHandley, J. Magn. Mater. 140 (1995) 467.
    [51] N. Moumen, M.P. Pileni, Chem. Mater. 8 (1996) 1128; b) A. T. Ngo, M. P. Pileni, Adv. Mater. 12 (2000) 276.
    [52] S. Sun, C.B. Murray, H. Doyle, Mater. Res. Soc. Symp. Proc. 577 (1999) 385.
    [53] X. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 437 (2005) 121.
    [54] a) T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, J. Am. Chem. Soc. 123 (2001) 12798; b) J. Park, E. Kang, C.J. Bae, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, H.M. Park, T. Hyeon, J. Phys. Chem. B 108 (2004) 13598.
    [55] T.J. Trentler, T.E. Denler, J.F. Bertone, A. Agrawal, V.L. Colvin, J. Am. Chem. Soc. 121 (1999) 1613.
    [56] J. Joo, T. Yu, Y.W. Kim, H.M. Park, F. Wu, J.Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 125 (2003) 6553.
    [57] A. Vioux, Chem. Mater. 9 (1997) 2292.
    [58] B.V. Enustun, J. Turkevich, J. Am. Chem. Soc. 85 (1963) 3317.
    [59] M.P. Pileni, B.W. Ninham, T. Gulik-Krzywicki, J. Tanori, I. Lisiecki, A. Filankembo, Adv. Mater. 11 (1999) 1358.
    [60] M. Maillard, S. Giorgio,M. P. Pileni, Adv. Mater. 14 (2002) 1084.
    [61] a) M.P. Pileni, Langmuir 13 (1997) 3266; b) M. P. Pileni, Nat. Mater. 2 (2003) 145.
    [62] D. Ingert, M. P. Pileni, Adv. Funct. Mater. 11 (2001) 136.
    [63] H.B. Mnnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Jaussen, B. Korall, Angew. Chem. 103 (1991) 1344; Angew. Chem. Int. Ed. Engl. 30 (1991) 1312.
    [64] B.Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J. 11 (2005) 454.
    [65] C.J. Brinker, G.W. Scherer, “Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing”, Academic Press, Boston, (1990).
    [66] T. Sugimoto, E. Matijevic, J. Colloid. Interface Sci. 74 (1980) 227.
    [67] M. Tada, S. Hatanaka, H. Sanbonsugi, N. Matsushita, M. Abe, J. Appl. Phys. 93 (2003) 7566.
    [68] M.A. Verge´s, R. Costo, A.G. Roca, J.F. Marco, G.F. Goya, C.J. Serna, J. Phys. D: Appl. Phys. 41 (2008) 134003.
    [69] J.P. Jolivet, E. Tronc, C. Chane´ac, Eur. Phys. J. Appl. Phys. 10 (2000) 167.
    [70] R. Massart, IEEE Trans. Magn. 17 (1981) 1247.
    [71] L. Vayssie`res, C. Chane´ac, E. Tronc, J. Jolivet, J. Colloid. Interface Sci. 205 (1998) 205.
    [72] D. Langevin, Annu. Rev. Phys. Chem. 43 (1992) 341.
    [73] C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.
    [74] J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed Engl. 46 (2007) 4630.
    [75] O. Bomatı´-Miguel, M.P. Morales, P. Tartaj, J. Ruiz-Cabello, P. Bonville, M. Santos, Biomaterials 26 (2005) 5695.
    [76] S.G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.M. Hwang, J. Am. Chem. Soc. 129 (2007) 12571.
    [77] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, J. Am. Chem. Soc. 126 (2004) 273.
    [78] S. Martelli, A. Mancini, R. Giorgi, R. Alexandrescu, S. Cojocaru, A. Crunteanu, Appl. Surf. Sci. 154 (2000) 353.
    [79] I. Morjan, R. Alexandrescu, I. Soare, F. Dumitrache, I. Sandu, I. Voicu, Mater. Sci. Eng. C 23 (2003) 211.
    [80] R. Marques, C. Garcia, P. Lecante, S. Ribeiro, L. Noe, N. Silva, J. Magn. Mater. 320 (2008) 2311.
    [81] L. Cabrera, S. Gutierrez, N. Menendez, M. Morales, P. Herrasti, Electrochem. Acta 53 (2007) 3436.
    [82] A. Henglein, Chem. Rev. 89 (1989) 1861.
    [83] T. Trindade, P. O'Brien, P, N.L. Pickett, Chem. Mater. 13 (2001) 3843.
    [84] S. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. 52 (2007) 699.
    [85] D. Bera, S.C. Kuiry, S. Seal, JOM 56 (2004) 49.
    [86] A.P. Alivisatos, Science 271 (1996) 933.
    [87] D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Materials 3 (2010) 2260.
    [88] D. Bera, L. Qian, P.H. Holloway, “Semiconducting Quantum Dots for Bioimaging” Informa. Heathcare: New York, NY, USA, 191 (2009).
    [89] D. Bera, L. Qian, P.H. Holloway, “Phosphor Quantum Dots”, John WIley & Sons, Ltd: West Sussex, UK, (2008).
    [90] A.D. Yoffe, Adv. Phys. 42 (1993) 173.
    [91] A.D. Yoffe, Adv. Phys. 50 (2001) 1.
    [92] E. Jang, S. Jun, L. Pu, Chem. Comm. (2003) 2964.
    [93] J.S. Steckel, P. Snee, S. Coe-Sullivan, J.R. Zimmer, J. E. Halpert, P. Anikeeva, L.A. Kim, V. Bulovic, M.G. Bawendi, Angew. Chem. Int. Ed. 45 (2006) 5796.
    [94] M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, Thin Solid Films 361 (2000) 98.
    [95] O. Savadogo, Sol. Energy Mater. Sol. Cells, 52 (1998) 361.
    [96] P. Tatiana, Y.A. Loginova, S.N. Kabachii, D.N. Sidorov, P.M. Zhirov, M.G. Valetsky, L.V. Ezernitskaya, T.P. Dybrovina, O.L. Bragina, B.S. Lependina, M.B. Lyudmila, Chem. Mater. 16 (2004) 2369.
    [97] Y. Xu, N.Al-Salim, R.D. Tilley, Nanomaterials 2 (2012) 54.
    [98] J.J. Ning, K.K. Men, G.J. Xiao, L. Wang, Q.Q. Dai, B. Zou, B.B. Liu, G.T. Zou, Nanoscale 2 (2010) 1699.
    [99] T. Jiang, G.A. Ozin, J. Mater. Chem. 8 (1998), 1099.
    [100] H. Wiedemeier , H.G.V. Schnering , Z. Kristallogr 148 (1978) 295 .
    [101] W. Albers , H.J. Vink , C. Haas , J. D. Wasscher , J. Appl. Phys. 32 (1961) 2220 .
    [102] D. Avellaneda , M.T. S. Nair , P.K. Nair , J. Electrochem. Soc. 155 (2008) 517.
    [103] A. Tanuisevski, D. Poelman, Sol. Energy Mater. Sol. Cells 80 (2003) 297.
    [104] J.P. Singh, R.K. Bedi, Thin Solid Films 199 (1991) 9.
    [105] http://www.webelements.com/compounds/tin/tin_sulphide.html.
    [106] G.H. Yue, D.L. Peng, J. Alloy Compd. (2008).
    [107] J.P. Singh, R.K. Bedi, Thin Solid Films 9 (1991) 199.
    [108] M. Radot, Rev. Phys. Appl. (Paris) 18 (1977) 345.
    [109] S.Y. Hong, R. Popovitz-Biro, Y. Prior, R. Tenne, J. Am. Chem. Soc. 125 (2005) 10470.
    [110] Q. Li, Y. Ding, H. Wu, X.M. Liu, and Y.T. Qian, Mater. Res. Bull. 37 (2002) 925.
    [111] G.Z. Shen, D. Chen, K.B. Tang, L.Y. Huang, Y.T. Qian, G.E. Zhou, Inorg. Chem. Commun. 6 (2003) 178.
    [112] H.L. Su, Y. Xie, Y.J. Xiong, P. Gao, Y.T. Qian, J. Solid State Chem. 161 (2001) 190.
    [113] C.H. An, K.B. Tang, Y. Jin, Q.C. Liu, X.Y. Chen, Y.T. Qian, J. Crystal Growth 252 (2003) 581.
    [114] C.H. An, K.B. Tang, G.Z. Shen, C.R. Wang, Q. Yang, B. Hai, Y.T. Qian, J. Crystal Growth 244 (2002) 333.
    [115] M. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Otomo, Sol. Energy Mater. Sol. Cells 35 (1994) 325.
    [116] N. K. Reddy, K.T. R. Reddy, Thin Solid Films 325 (1998) 116.
    [117] K.T.R. Reddy, P.P. Reddy, R.W. Miles, P.K. Datta, Opt. Mater. 17 (2001) 295.
    [118] P.K. Nair, M.T.S. Nair, V.M. Garcia, Sol. Energy Mater. Sol. Cells 52 (1998) 313.
    [119] M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, Thin Solid Films 98 (2000) 361.
    [120] S. Cheng, Y. Chen, C. Huang, G. Chen, Thin Solid Films 96 (2006) 500.
    [121] K. Takeuchi, M. Ichimura, E. Arai, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 75 (2003) 153.
    [122] N. Sato, M. Ichimura, E. Arai, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 85 (2005) 153.
    [123] S. Kamoshida, S. Suzuki, Jpn. Pat. JP 08176814 (1996) 2.
    [124] Y. Sasaki, N. Aoki, S. Kamoshita, Jpn. Pat. JP 081440442 (1996) 2.
    [125] A. Tanusevski, Semicond. Sci. Technol. 18 (2003) 501.
    [126] E. Turan, M. Kul, A.S. Aybek, J. Phys. D: Appl. Phys. 42 (2009) 245408.
    [127] S.Y. Cheng, Y.J. He, G.N. Chen, Mater. Chem. Phys. 110 (2008) 449.
    [128] M. Devika, N.K. Reddy, K. Ramesh, R. Ganesan, K.R. Gunasekhar, E.S.R. Gopal, K.T. Ramakrishna Reddy, J. Electrochem. Soc. 154 (2007) 67.
    [129] A. Abou Shama, H.M. Zeyada, Opt. Mater. 24 (2003) 555.
    [130] S. K. Arora, D.H. Patel, M.K. Agarwal, J. Cryst. Growth 131 (1993) 268.
    [131] E.P. Trifonova, I.Y. Yanchev, V.B. Stoyanova , Mater. Res. Bull. 31 (1996) 919.
    [132] J. George, C.K. Valsalakumari, K.S. Joseph, J. Appl. Phys. 54 (1983) 5347.
    [133] M.J. Powel, J. Phys. C: Solid State Phys. 10 (1977) 2967.
    [134] B. Thangaraju, P. Kaliannan, J. Phys. D: Appl. Phys. (Berl) 33 (2000) 1054.
    [135] A. Ortiz, J.C. Alonso, M. Garcia, J. Toriz, Semicond. Sci. Technol. 11(1996) 243.
    [136] L.S. Price, I.P. Parkin, M.N. Field, J. Mater. Chem. 10 (2000) 527.
    [137] H.T. Liu, Y. Liu, Z. Wang, P. He, Nanotechnology 21 (2010) 105707.
    [138] A.A. George, C.S. Mercês, C.B. Ana, M. Geraldo, M.L. Rochel, T.C. Maria, Phys. Chem. Chem. Phys. 2 (2000) 5708.
    [139] C. An, K. Tang, Y. Jin, Q. Liu, X. Chen, Y. Qian, J. Cryst. Growth 252 (2003) 581.
    [140] (a) S.G. Hickey, C. Waurisch, B. Rellinghaus, A. Eychmüller, J. Am. Chem. Soc., 130 (2008) 14978; (b) Y. Xu, N. Al-Salim, C.W. Bumby, R.D. Tilley, J. Am. Chem. Soc. 131 (2009) 15990.
    [141] S. Schlecht, and L. Kienle, Inorg. Chem. 40 (2001) 5719.
    [142] D.S. Koktysh, J.R. McBride, S.J. Rosenthal, Nanoscale Res. Lett. 2 (2007) 144.
    [143] Z. Deng, D. Han, Y. Liu, Nanoscale 3 (2011) 4346.
    [144] S.Y. Hong, R. Popovitz-Biro, Y. Prior, R. Tenne, J. Am. Chem. Soc. 125 (2003) 10470.
    [145] M.M. Rao, M. Jayalakshmi, S. Reddy, Chem. Lett. 33 (2004) 1044.
    [146] S. Biswas, S. Kar, S. Chaudhuri, Appl. Surf. Sci. 253 (2007) 9259.
    [147] Y. Liu, D. Hou, G. Wang, Chem. Phys. Lett. 379 (2003) 67.
    [148] S.K. Panda, A. Datta, A. Dev. S. Gorai, S. Chaudhuri, Cryst. Growth Des. 6 (2006) 2179.
    [149] G.H. Yue, L.S. Wang, X. Wang, Y.Z Chen, D.L. Peng, Nanoscale Res. Lett. 4 (2009) 359.
    [150] E.C. Greyson, J.E. Barton, T.W. Odom, Small 3 (2006) 368.
    [151] D. Chen, G.Z. Shen, K.B. Tang, S.J. Lei, H.G. Zheng, Y.T. Qian, J. Cryst. Growth, 260 (2004) 469.
    [152] H. Zhu, D. Yang, Y.J. Ji, H. Zhang, X.Shen, J. Mater. Sci. 40 (2005) 591.
    [153] C. An, K. Tang, G. Shen, C. Wang, Q. Yang, B. Hai, Y. Qian, J. Cryst. Growth 244 (2002) 333.
    [154] H. Hu, B. Yang, J. Zeng, Y. Qian, Mater. Chem. Phys. 86 (2004) 233.
    [155] C.A. Crouse, A.R. Barron, J. Mat. Chem. 18 (2008) 4146.
    [156] S.Y. Cheng, Y.Q. Chen, Y.J. He, G.N. Chen, Mater. Lett. 61 (2007) 1408.
    [157] H. Tang, J. Yu, X. Zhao, J. Alloys Compd. 460 (2008) 513.
    [158] S.C. Wang, R.K. Chiang, P.J. Hu, J. Eur. Ceram. Soc. 31 (2011) 2447.
    [159] M. Yin, A. Willis, F. Redl, N.J. Turro, S.P. ƠBrien, J. Mater. Res. 19 (2004) 1208.
    [160] Z.L. Wang, J.M. Petroski, T.C. Green, M.A. El-Sayed, J. Phys. Chem. B 102 (1998) 6145.
    [161] J.M. Petroski, Z.L. Wang, T.C. Green, M.A. El-Sayed, J. Phys. Chem. B 102 (1998) 3316.
    [162] W.S. Chiu, P.S. Khiew, D. Isa, M. Cloke, S. Radiman, R. Abd-Shukor, M.H. Abdullah, N.M. Huang, Chem. Eng. J. 142 (2008) 337.
    [163] Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Colloids and Surfaces A: Physicochem. Eng. Aspects 364 (2006) 285.
    [164] F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L.Sandstrom, M. Yin, H. Zeng, C.B. Murray, S.P. O’Brien, J. Amer. Chem. Soc.126 (2004) 14583.
    [165] W.S. Chiu, S. Radiman, M.H. Abdullah, P.S. Khiew, N.M. Huang, R. Abd-Shukor, Mater. Chem. Phys. 106 (2007) 231.
    [166] R. Si, Y.W. Zhang, L.P. You, C.H. Yan, Angew. Chem. Int. Ed. 44 (2005) 3256.
    [167] W.W. Yu, X. Peng, Angew. Chem. Int. Ed. 41 (2002) 2368.
    [168] S.M. Lee, S.N. Cho, J. Cheon, Adv. Mater. 15 (2003) 441.
    [169] S. Sapra, J. Poppe, A. Eychmüller, Small 3 (2007) 1886.
    [170] B. thangaraju, P. Kaliannan, J. Phys. D: Appl. Phys. 33 (2000) 1054.
    [171] C.R. Sehhar, K.K. Malay, D.D. Gupta, Thin Solid Films 350 (1999) 72.
    [172] Y. Zhao, Z. Zhang, H. Dang, W. Liu, Mater. Sci. Eng., B 113 (2004) 175.
    [173] Y. Liu, C. Zheng, W. Wang, C. Yin, G. Wang, Adv. Mater. 13 (2001) 1883.
    [174] S. Sohila, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, J. Alloy Compd. 509 (2011) 5843.
    [175] P.M. Nikolic, P. Lj Miljkovic, B. Mihajlovic, Lavrencic, J. Phys. C: Solid Status Phys. 10 (1977) 289.
    [176] H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, M. Cardona, Phys. Rev. B 15 (1977) 2177.
    [177] N.R. Mathews, H.B.M. Anaya, M.A. Cortes-Jacome, C. Angeles-Chavez, J.A. Toledo-Antonio, J. Electrochem. Soc. 157 (2010) 337.
    [178] M. Devika, N.K. Reddy, F. Patolsky, K.R. Gunasekhar, J. Appl. Phys. 104 (2008) 124503.
    [179] P.R. Bueno, J.A. Varela, E. Longo, J. Eur. Ceram. Soc. 28 (2008) 505.

    無法下載圖示 校內:2016-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE