簡易檢索 / 詳目顯示

研究生: 黃胤鈞
Huang, Yin-Chun
論文名稱: 利用超導量子位元控制量子聲波的週期性法諾共振
Controlling Periodic Fano Resonance of Quantum Acoustic Wave with Superconducting Qubit
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 49
中文關鍵詞: 量子聲波表面聲波法諾共振
外文關鍵詞: Fano resonance, Quantum acoustic wave
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近幾年的研究中,已經證實了超導量子電路可以藉由壓電材料的聲電轉換器 (IDT)耦合到表面聲波(SAW),藉由表面聲波取代原本以光波來傳遞能量 的方式儼然成為一種新興的研究領域,而我們在此分別說明了一般藉由光子耦 合到一個二能階的超導量子位元和藉由聲子耦合到一個超導量子位元的散射曲 線差異,由於表面聲波的傳遞速度和光速相比慢了五個數量級,而使超導電路 猶如一個巨型原子一般,造成其相位的影響已變得不再可以忽略,亦使散射譜 線展示了有趣的特性,而我們在此展現了藉由結合這兩種傳遞方式以達到利用 超導量子電路傳播能量的一種新的可能性,我們研究“使微波波導耦合到一個 超導量子位元,再藉由此超導量子位元耦合至表面聲波”的散射譜線,發現在 表面聲波端的穿透率會有類似法諾共振的曲線特性,也進一步去探討其產生的原因。

    In addition to the system's continuous and discontinuous states, the Fano effect also requires specific interference conditions. For example, artificial atoms coupled to two identical microwave waveguides have continuous and discontinuous states, but they cannot effectively form the Faro effect. If artificial atoms are used to couple to the microwave waveguide and the IDT composite device, it can produce interference conditions that satisfy the Fano conditions. We have analyzed the steady-state transmission and reflection scattering spectra of the surface acoustic wave by using the long time limit method and the Fano curve are obtained by Taylor expansion. Finally, we obtain periodic Fano curves, which make the system demonstrate different phenomena compared with general quantum optical properties.

    第一章 緒論 1.1 量子聲學傳輸特性簡介及應用...1 1.2 藉由表面聲波實現量子聲學之技術概要...3 1.3 法諾共振曲線簡介及應用...4 第二章 波導耦合二能階人造原子的傳輸特性 2.1 微波波導耦合到二能階人造原子...7 2.2 表面聲波耦合到二能階人造原子...11 第三章 微波與表面聲波波導耦合二能階人造原子的散射圖譜形式...15 第四章 微波與表面聲波波導耦合二能階人造原子的散射圖譜分析 4.1 無相位下,對應不同耦合強度之探討...21 4.2 有無相位比較...25 4.3 對應不同相位的週期特性分析...27 第五章 微波與表面聲波波導耦合二能階人造原子的近似法諾共振解析形式...29 第六章 微波與表面聲波波導耦合二能階人造原子的法諾共振曲線分析 6.1 週期性法諾共振曲線...33 第七章 結論...36 參考資料...37 附錄... 39

    [1] Bharath Kannan, Max J. Ruckriegel, Daniel L. Campbell, Anton Frisk Kockum, Jochen Braumüller, David K. Kim, Morten Kjaergaard, Philip Krantz, Alexander Melville, Bethany M. Niedzielski, Antti Vepsäläinen, Roni Winik, Jonilyn L. Yoder, Franco Nori, Terry P. Orlando, Simon Gustavsson & William D. Oliver“ Waveguide quantum electrodynamics with superconducting artificial giant atoms,” Nature 583, 775–779 (2020).
    [2] R. J. Schoelkopf & S. M. Girvin, “Wiring up quantum systems,” Nature 451, 664–669 (2008).
    [3] Dibyendu Roy, C. M. Wilson, and Ofer Firstenberg, “Strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
    [4] Lingzhen Guo, Arne Grimsmo, Anton Frisk Kockum, Mikhail Pletyukhov, and Göran Johansson, “Giant acoustic atom: A single quantum system with a deterministic time delay,” Phys. Rev. A 95, 053821 (2017).
    [5] Gustav Andersson, Baladitya Suri, Lingzhen Guo, Thomas Aref & Per Delsing, “Non-exponential decay of a giant artificial atom,” Nature 15, 1123– 1127 (2019).
    [6] Martin V. Gustafsson, Thomas Aref, Anton Frisk Kockum, Maria K. Ekström, Göran Johansson & Per Delsing, “Propagating phonons coupled to an artificial atom,” Science 346, 207-211 (2014).
    [7] T. Aref, P. Delsing, M. K. Ekström, A. F. Kockum, M. V.Gustafsson, G. Johansson, P. J. Leek, E. Magnusson, and R.Manenti, Quantum acoustics with surface acoustic waves, in Superconducting Devices in Quantum Optics, edited by H. R.Hadfield and G. Johansson (Springer International Publishing,Cham, 2016), pp 217–244. (2016).
    [8] Andrey E. Miroshnichenko, Sergej Flach, and Yuri S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257 (2010).
    [9] Mikhail F. Limonov, Mikhail V. Rybin, Alexander N. Poddubny and Yuri S. Kivshar, “Fano resonances in photonics,” Nature Photon 11, 543–554 (2017).
    [10] Y. H. Zhou, X. Y. Zhang, Dan Dan Zou, Qi-Cheng Wu, Biao Ling Ye, Y. L. Fang, H. Z. Shen, and Chui-Ping Yang, “Controllable scattering of a single photon inside a one-dimensional coupled resonator waveguide with second-order nonlinearity,” Opt. Express 28, 1249-1260 (2020).
    [11] Lan Zhou (周兰), Z. R. Gong (龚志瑞), Yu-xi Liu (刘玉玺), C. P. Sun (孙昌璞), and Franco Nori (野理),“Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
    [12] C. K. Campbell, “Applications of surface acoustic and shallow bulk acoustic wave devices,” IEEE Xplore, 77, 10, 1453-1484, (1989).
    [13] Martin V. Gustafsson, Paulo V. Santos, Göran Johansson & Per Delsing, “Local probing of propagating acoustic waves in a gigahertz echo chamber,” Nat. Phys 8, 338–343 (2012).
    [14] A. A. Oliner, Waveguides for Surface Waves, in Acoustic Surface Waves, pp.187–223 (1978).
    [15] D. Morgan, Surface Acoustic Wave Filters (2007).
    [16] M. M. de Lima and P. V. Santos, “Modulation of Photonic Structures by Surface Acoustic Waves,”Rep. Prog. Phys. 68, 1639 (2005).
    [17] M. M. de Lima, J. Camacho, W. Seidel, H. Kostial, and P. V. Santos, Intense Acoustic Beams for Photonic Modulation, Proc. SPIE Int. Soc. Opt. Eng. 5450, 118 (2004).
    [18] Fano, U.,“Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [19] Fano, U., “Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco,” Nuovo Cimento 12, 154–161. (1935).
    [20] Breit, G., and E. Wigner, “Capture of slow neutrons”, Phys. Rev. 49, 519–531 (1936).
    [21] J. -T. Shen, and S. Fan, “Coherent Single Photon Transport in a One-Dimensional Waveguide Coupled with Superconducting Quantum Bits,” Phys. Rev. Lett. 95, 213001 (2005).

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE