| 研究生: |
廖珮誼 Liao, Pei-Yi |
|---|---|
| 論文名稱: |
近紅外光驅動多功能奈米材料作為光熱治療及藥物遞送平台:
中孔洞二氧化矽包覆四氧化三鐵-金核殼結構 Near-Infrared Light Triggered Multifunctional Nanomaterial as Photothermal Therapy and Drug Delivery Platform: Mesoporous Silica-coated Fe3O4@Au Nanoparticles |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 近紅外光 、四氧化三鐵 、金殼層 、中孔洞二氧化矽 、去氧核醣核酸 、光熱治療 、藥物控制釋放 、偕同效應 |
| 外文關鍵詞: | Near-Infrared Light, Iron Oxide, Gold Nanoshell, Mesoporous Silica, DNA, Photothermal Therapy, Control Release, Synergistic Effect |
| 相關次數: | 點閱:112 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米材料發展至今,已有許多關於生醫領域的探索與應用,其中尤以磁性奈米粒子及金奈米粒子較為廣泛被研究;磁性奈米粒子可應用於磁導引、磁共振造影等方面,而金奈米粒子具有特殊的表面電漿共振吸收,可做光熱治療之應用。此外,以奈米材料作為抗癌藥物載體的應用亦蓬勃發展中,近年來,有許多利用中孔洞二氧化矽材料作為藥物載體之研究,若能再配合可受外界環境刺激打開的孔洞蓋子,則可達到抗癌藥物的控制釋放,使在治療時,可使用更少量的抗癌藥物即可達到治療效果。
本研究中,以四氧化三鐵-金核殼結構作為奈米藥物載體的核心粒子,使其可同時具有磁導引、磁共振造影及光熱治療的效果,另外,四氧化三鐵-金核殼結構外部包覆上中孔洞二氧化矽殼層,將抗癌藥物doxorubicin裝載於孔洞內,最後再以雙股去氧核醣核酸(deoxyribonucleic acid,DNA)作為藥物載體的開關,並以近紅外光驅動雙股DNA去雜交,達到藥物之控制釋放進而有效殺死癌細胞。
此外,本研究中所使用的材料同時具有光熱治療及化學藥物治療之功效,實驗結果顯示,將此兩種治療方式結合在同一個系統中,可達到結合治療之偕同效應(synergistic effect)效果,進而更有效殺死癌細胞。
Since the date that nanomaterial been developed, there’re numerous related explorations and application in biomedical field. Upon all kind of the nanomaterials, magnetic nanoparticles and gold nanomaterials are more extensively researched. Magnetic nanoparticles can be used in magnetic targeting, magnetic resonance imaging (MRI), etc., whereas gold nanomaterials can be applied in photothermal therapy because of the surface plasma resonance character of gold nanomaterials. Furthermore, the application of nanomaterials as anti-cancer drug carrier has been widely developed. For example, there’re many study about mesoporous silica nanomaterial, which can be used as drug carrier. Supposing that there’re stimuli-responsive caps attached on the mesoporous silica nanomaterial surface which can be the switch of the drug, we may attain the goal to control anti-cancer drug release. In addition, we may be able to use less amount of the drug to reach the effective cancer therapy.
In this study, we take iron oxide coated gold nanoshell (Fe3O4@Au) as the core of the nanocarrier, which can be applied to magnetic targeting, MRI, and thermotherapy. Moreover, coating mesoporous silica shell on Fe3O4@Au core may render us to load doxorubicin (an anti-cancer drug) into the pores of mesoporous silica shell. At last, we use stimuli-responsive double stranded deoxyribonucleic acid (dsDNA) as the caps to cover the pore which loaded doxorubicin. Owing to the stimuli-responsive caps, we are able to use NIR laser light to trigger doxorubicin release, and achieve the purpose of controlling drug release.
1. Hartmut, H.; Stephan, W. K., Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific 1994.
2. Lin, Y. S.; Wu, S. H.; Hung, Y.; Chou, Y. H.; Chang, C.; Lin, M. L.; Tsai, C. P.; Mou, C. Y., Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chem Mater 2006, 18, 5170-5172.
3. Deki, S.; Sayo, K.; Fujita T.; Yamadaa, A.; Hayashib, S., Dispersion of nano-sized gold particles into polymers: dependence on terminal groups of polymers and morphology of vapor-deposited gold. J. Mater. Chem. 1999, 9, 943-947.
4. 莊萬發, 超微粒子理論應用. 復漢出版社 1995.
5. 王崇人, 神奇的奈米科學. 科學發展月刊 2002, 354, 48-51.
6. https://commons.wikimedia.org/wiki/File:Quantum_confinement_1.png Wikipedia.
7. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933-937.
8. Dave, S. R.; Gao, X. H., Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Nanomed Nanobiotechnol 2009, 1, 583-609.
9. Ling, D. S.; Hyeon, T., Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications. Small 2013, 9, 1450-1466.
10. Cotton, F. A.; Wilkinson, G., Advanced inorganic chemistry. New York: Wiley Interscience, 1988.
11. Cornell, R. M.; Schertmann, U., Iron oxides in the laboratory; preparation and characterization. VCH, Weinheim, 1991.
12. Kim, D. K.; Zhang, Y.; Voit, W.; Rao, K. V., Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 2001, 225, 30-36.
13. Massart, R., Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. Magn. 1981, 17, 1247-1248.
14. Fauconnier, N.; Bee, A.; Roger, J.; Pons, J. N., Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J. Mol. Liq. 1999, 83, 233-242.
15. Fauconnier, N.; Pons, J. N.; Roger, J.; Bee, A., Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid. J. Colloid Interface Sci. 1997, 194, 427-433.
16. Roger, J.; Pons, J. N.; Massart, R.; Halbreich, A.; Bacri, J. C., Some biomedical applications of ferrofluids. Eup. Phys. J.-Appl. Phys. 1999, 5, 321-325.
17. Denizot, B.; Tanguy, G.; Hindre, F.; Rump, E.; Jeune, J. J. L.; Jallet, P., Phosphorylcholine Coating of Iron Oxide Nanoparticles. J. Colloid Interface Sci. 1999, 209, 66-71.
18. Fauconnier, N.; Bee, A.; Roger, J.; Pons, J. N., Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Trends Colloid Interface Sci. 1996, 100, 212-216.
19. Bao, Y.; Pakhomov, A. B.; Krishnan, K. M., Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids. J. Appl. Phys. 2006, 99, 08H107.
20. Kim, K. S.; Park, J. K., Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 2005, 5, 657-664.
21. Kotitz, R.; Weitschies, W.; Trahms, L.; Brewer, W.; Semmler, W., Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 194, 62-68.
22. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715.
23. Peng, X. G.; Manna, L.; Alivisatos, A. P., Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.
24. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc. 2001, 123, 12798-12801
25. Park, J.; An, K.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 2004, 3, 891-895.
26. William, W. Y.; Falkner, J. C.; Yavuz, C. T.; Colvin, V. L., Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 20, 2306-2307.
27. Jana, N. R.; Chen, Y.; Peng, X., Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater. 2004, 16, 3931-3935.
28. Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T., Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. J. Am. Chem. Soc. 2008, 131, 454-455.
29. Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W. K.; Choi, S. H.; Hyeon, T., Water-Dispersible Ferrimagnetic Iron Oxide Nanocubes with Extremely High r2 Relaxivity for Highly Sensitive in Vivo MRI of Tumors. Nano Lett. 2012, 12, 3127-3131.
30. Kwon, S. G.; Piao, Y.; Park, J.; Angappane, S.; Jo, Y.; Hwang, N. M.; Park, J. G.; Hyeon, T., Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process. J. Am. Chem. Soc. 2007, 129, 12571-12584.
31. Lübbe, A. S.; Bergemann, C.; Riess, H., Clinical Experiences with Magnetic Drug Targeting: A Phase I Study with 4'- Epidoxorubicin in 14 Patients with Advanced Solid Tumors1. Cancer Res. 1996, 56, 4686-4693.
32. Alexiou, C.; Arnold, W.; Klein, R. J., Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Res. 2000, 60, 6641-6648.
33. Lubbe, A. S.; Alexiou, C.; Bergemann, C., Clinical Applications of Magnetic Drug Targeting. Journal of Surgical Research 2001, 95, 200-206.
34. Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M. R. Santamaría, J., Magnetic nanoparticles for drug delivery. Nano Today 2007, 2, 22-32.
35. Chertoka, B.; Moffatb, B. A.; Davida, A. E.; Yua, F.; Bergemannc, C.; Rossb, B. D.; Yang, V. C., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008, 29, 487-496.
36. Nuzzo, R. G.; Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A., Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108, 494-521.
37. Nagatani, N.; Shinkai, M.; Honda, H.; Kobayashi, T., Gene delivery for genetically engineered mucosal cells with enhanced function. Bioteclnol. Lett. 2000, 22, 999-1002.
38. Davids, M. J.; Taylor, J. I.; Sachsinger, N.; Bruce, I. J., Isolation of Plasmid DNA Using Magnetite as a Solid-Phase Adsorbent. Anal. Biochem. 1998, 262, 92-94.
39. Grabar, K.C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. J. Anal. Chem. 1995, 67, 735-743.
40. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett. 2005, 5, 829-834.
41. Loo, C.; Hirsch, L.; Lee, M. H.; Chang, E.; West, J.; Halas, N.; Drezek, R., Gold nanoshell bioconjugates for molecular imaging in living cells. Opt. Lett. 2005, 30, 1012-1014.
42. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549-13554.
43. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L., Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Lett. 2007, 7, 1929-1934.
44. Li , J. L.; Wang, L.; Liua, X. Y.; Zhang, Z. P.; Guo, H. C.; Liu, W. M., Tang, S. H., In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009, 274, 319-326.
45. Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A., A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies. Small 2011, 7, 169-183.
46. Smith, A. M.; Mancini, M. C., Nie, S., Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.
47. Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T., Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angew. Chem. 2006, 118, 7918-7922.
48. Zhang, H.; Li, Y.; Ivanov, I. A.; Qu, Y.; Huang, Y.; Duan X., Plasmonic Modulation of the Upconversion Fluorescence inNaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells. Angew. Chem. 2010, 122, 2927-2930.
49. Wu, C. Y.; Yu C.; Chu, M. Q., A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int. J. Nanomedicine 2011, 6, 807-813.
50. Chen, Q. F.; Rao, Y. Y.; Ma, X. Y.; Dong, J.; Qian, W. P., Raman spectroscopy for hydrogen peroxide scavenging activity assay using gold nanoshell precursor nanocomposites as SERS probes. Anal. Methods 2011, 3, 274-279.
51. Kumagai, M.; Sarma, T. K.; Cabral, H.; Kaida, S.; Sekino, M.; Herlambang, N.; Osada, K.; Kano, M. R.; Nishiyama, N.; Kataoka, K., Enhanced in vivo Magnetic Resonance Imaging of Tumors by PEGylated Iron-Oxide-Gold Core-Shell Nanoparticles with Prolonged Blood Circulation Properties. Macromol. Rapid Commun. 2010, 31, 1521-1528.
52. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161-171.
53. Sanvicens, N.; Marco, M. P., Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol. 2008, 26, 425-433.
54. Jin, Y.; Jia, C.; Huang, S. W.; O ’ Donnell, M.; Gao, X., Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 1-8.
55. Cheng, Z.; Zaki, A. A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas , A., Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities. Science 2012, 338, 903-910.
56. Wang, L.; Luo, J.; Maye, M. M.; Fan, Q.; Rendeng, Q.; Engelhard, M. H.; Wang, C.; Lin, Y.; Zhong, C. J., Iron oxide-gold core-shell nanoparticles and thin film assembly. J. Mater. Chem. 2005, 15, 1821-1832.
57. Fan, Z.; Shelton, M.; Singh, A. K.; Senapati, D.; Khan, S. A.; Ray, P. C., Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells. ACS Nano 2012, 6, 1065-1073.
58. Jin, X.; Liang, J.; Yang, C.; Hao, R.; Zhuang, J.; Yang, W., Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 2013, 1, 1921-1925.
59. Popplewell, J. F.; King, S. J.; Day, J. P.; Ackrill, P.; Fifield, L. K.; Cresswell, R. G.; Tada, M. L. d.; Liu, K., Kinetics of Uptake and Elimination of Silicic Acid by a Human Subject: A Novel Application of 32Si and Accelerator Mass Spectrometry. J. Inorg. Biochem. 1998, 69, 177-180.
60. Mackowiak, S. A.; Schmidt, A.; Weiss, V.; Argyo, C.; Schirnding, C.; Bein, T.; Bräuchle, C., Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles. Nano Lett. 2013, 13, 2576-2583.
61. Zhang, J.; Yuan, Z. F.; Wang, Y.; Chen, W. H.; Luo, G. F.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z., Multifunctional Envelope-Type Mesoporous Silica Nanoparticles for Tumor-Triggered Targeting Drug Delivery. J. Am. Chem. Soc. 2013, 135, 5068-5073.
62. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere- Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. J. Am. Chem. Soc. 2003, 125, 4451-4459.
63. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P., pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker. J. Am. Chem. Soc., 2010, 132, 1500-1501.
64. Ruiz-Hernandez, E.; Baeza, A.; Vallet-Regı´, M., Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 2011, 5 (2), 1259-1266.
65. Liu, R.; Zhao, X.; Wu, T.; Feng, P., Anticancer Tunable Redox-Responsive Hybrid Nanogated Ensembles. J. Am. Chem. Soc. 2008, 132, 10645-10647.
66. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F., Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. J. Am. Chem. Soc. 2008, 130, 2382-2383.
67. Kostiainen1, M.A.; Smith, D.K.; Ikkala O., Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Charge-Switching Multivalency. Angew. Chem. Int. Ed. 2007, 46, 7600-604.
68. Liua, J.; Meisner, D.; Kwong, E.; Wu, X. Y.; Johnston, M. R., A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres. Biomaterials 2007, 28, 3236-3244.
69. Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y. L.; Nan, K.; Nie, G.; Chen, Hao., Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011, 32, 8281-8290.
70. Niu, C.; Wang, Z.; Lu, G.; Krupka, T. M.; Sun, Y.; You, Y.; Song, W.; Ran, H.; Li, P.; Zheng, Y., Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 2013, 34 , 2307-2317.
71. Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A., Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J. Am. Chem. Soc. 2008, 130, 8175-8177.
72. Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y.-J.; Liu, H.; Huang, Y-F.; Zhang, X.; Tan, W., Near-Infrared Light-Responsive Core-Shell Nanogels for Targeted Drug Delivery. ACS Nano 2011, 5, 5094-5099.
73. Oishi, M.; Nakamura, T.; Jinji, Y.; Matsuishi, K.; Nagasaki, Y., Multi-Stimuli-Triggered Release of Charged Dye from Smart PEGylated Nanogels Containing Gold Nanoparticles to Regulate Fluorescence Signals. J. Mater. Chem. 2009, 19, 5909-5912.