簡易檢索 / 詳目顯示

研究生: 藍志達
Lan, Chih-Da
論文名稱: 應用DQEM分析受軸向分佈力的尤拉樑挫曲問題
Application of DQEM to the analysis of the buckling of an Euler-Bernoulli beam subjected to an axially distributed force
指導教授: 陳長鈕
Chen, Chang-New
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: 數值積分表示微分元素法軸向分佈力挫曲
外文關鍵詞: axially distributed force, buckling, DQEM
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有限元素法及有限差分法為兩種既有的數值分析技巧。有限元素法因為能夠被有系統地編成電腦程式,已經被廣泛應用於一般的結構分析;數值積分表示微分元素法(DQEM)為陳長鈕老師所研究開發出來的一種結構分析的數值方法,除了能有系統地編寫成電腦程式外,也可以更有效地求得精確的解。
    數值積分表示微分元素法將欲分析的結構物分割成有限個元素,然後利用數值積分表示微分的技巧,對定義於各個元素的微分或偏微分關係式做數值的離散化,然後由考慮在整體結構物的離散點滿足所應具有的力學微分關係式的條件下,可得到結構物的離散方程式系統。
    DQEM是一個高度準確分析方法。 被使用這個方法,錯誤可以有效地減少,並且可以快速將數值收斂。 因此,可以快速的並且減少需要的CPU時間。

    DQEM is used to solve the buckling problem of a Euler-Bernoulli beam subjected to an axially distributed force The approach uses the differential quadrate (DQ) to discretize the governing differential equations defined on all elements, the transition conditions defined on the inter-element boundaries of two adjacent elements, and the boundary conditions of the beam. By assembling all the discrete relation equations, a global linear algebraic system can be obtained.

    The numerical procedure of this method can be systematically implemented into a computer program. The coupling of solutions discrete points is strong. In addition, all fundamental relations are considered in constructing the overall discrete algebraic system.

    DQEM is a highly accurate analysis method. By using this method, error can be effectively reduced and convergence can be improved. Consequently, the CPU-time required can be drastically reduced

    摘要................................................................................................................Ⅰ Abstract..........................................................................................................Ⅱ 誌謝............................................................................................................. Ⅲ 目錄............................................................................................................. Ⅳ 表目錄......................................................................................................... Ⅵ 圖目錄......................................................................................................... Ⅶ 符號說明.......................................................................................................IX 第一章 緒論................................................................................................1 第二章 數值積分表示微分法.....................................................................3 2-1 DQM介紹...................................................................................3 2-2 DQM的數學模型.....................................................................5 2-3 DQM的求解步驟......................................................................6 第三章 數值積分表示微分元素法.............................................................7 3-1 DQEM的敘述............................................................................7 3-2 DQEM的求解步驟....................................................................8 3-3權重係數的計算方法...............................................................9 3-3.1方法一.....................................................................................9 3-3.2方法二....................................................................................11 3-3.3方法三....................................................................................12 第四章 DQEM受軸向力的等斷面樑挫曲問題模式.............................16 4-1理論推導...........................................................................16 4-2實例計算與討論..................................................................25 4-2.1模式一(邊界條件為固定-自由)......................................25 4-2.2模式二(邊界條件為簡支承)..............................................31 4-2.3模式三(邊界條件為固定-固定)....................................37 4-2.4模式四(邊界條件為固定-鉸接)......................................43 4-2.5模式伍(結合樑、邊界條件為固定-自由) .......................49 第五章 DQEM受軸向力的變斷面樑挫曲問題模式.............................55 5-1理論推導...........................................................................55 5-2實例計算與討論.................................................................63 5-2.1模式一(矩形樑、邊界條件為固定-自由)........................63 5-2.2模式二(矩形樑、邊界條件為簡支承)..........................69 5-2.3模式三(矩形樑、邊界條件為固定-固定).......................75 第六章 結論................................................................................................81 參考文獻......................................................................................................82 附錄一 五個離散點的權重係數一覽表..................................................A 附錄二 六個離散點的權重係數一覽表..................................................B 附錄三 七個離散點的權重係數一覽表..................................................C 附錄四 八個離散點的權重係數一覽表...................................................D 附錄五 九個離散點的權重係數一覽表....................................................E 附錄六 十個離散點的權重係數一覽表...................................................F 附錄七 十一個離散點的權重係數一覽表.............................................. G 附錄八 Power Method 求解特徵值及特徵向量之流程圖.....................H

    【1】R. E. Bellman and J. Casti "Differential Quadrature and Long-term Itegration" , J. Math. Anal. , 34 , 235-238(1971)

    【2】F. Civan and C. M. Sliepcevich "Differential Quadratrual for Multi-dimentional Problems" , J. Math. Anal. Appl. , 101 , 423-443(1984)

    【3】S. K. Jang , C. W. Bert and A. G. Striz "Application of Differential Quadrature to Static Analysis of Structural Components", Int. J. Numer. Methods eng. , 28 , 561-577(1989)

    【4】林育男 “數值積分表示微分元素法的研究”, 國立成功大學造船及船舶機械工程研究所碩士論文(1995)

    【5】曾紹瑜 “應用DQEM分析Pasternak彈性基座的樑結構問題”, 國立成功大學造船及船舶機械工程研究所碩士論文(2003)

    【6】宋治勇 “數值積分表示微分元素法振動分析模式”, 國立成功大學造船及船舶機械工程研究所碩士論文(1996)

    【7】何彥輝 “應用DQEM分析具與不具彈性基座之變斷面樑的問題”, 國立成功大學造船及船舶機械工程研究所碩士論文(2000)

    【8】C. N. Chen " Generalization of Differential Quadrature Discretization",
    Numerical Algorithms, Vol.22, 167-182 (1999)

    【9】Chang Shu And Bryan E. Richard "Application of Generalized Differential
    Quadrature to solve Two-Dimensional Incomoressible Navier-Stokes Equations" ,International Journal For Numerical Method in Fluid, Vol. 15, 791-798 (1992)

    【10】謝明錡 "數值積分表示微分元素法具彈性基座樑分析模式", 國立成功大學造船及船舶機械工程研究所碩士論文(1996)

    【11】何彥輝 "應用 DQEM 分析具與不具彈性基座之變斷面樑的問題", 國立成功大學造船及船舶機械工程研究所碩士論文(2000)

    【12】Singiresu S. Rao "Mechanical Vibrations", Addison Wesley , Second Edition(1990)

    【13】Eisenberger, M. and Bielak, J. " Finite beams on infinite two-parameter elastic foundations ", Computers and Structures , v42 , n4 , 661-664 (1992)

    【14】邱富勇 "變斷面柱挫曲問題之數值積分表示微分法分析模式", 國立成功大學造船及船舶機械工程研究所碩士論文(1998)
    【15】Franciosi, C. and Masi, A " Free vibrations of foundation beams on two-parameter elastic soil ", Computers and Structures , v47 , n3 , 419-426 (1993)

    【16】De Rosa, M. A. " Stability and dynamic analysis of two-parameter elastic foundation beams ", Computers and Structures , v49 , n2 , 341-349 (1993)

    【17】C. N. Chen " A Differentail Quadrature Element Method ", Proc. 1st Intl. Conf. Engr. Computation and Computer Simulation , Changsha , China , 25-35 (1995)
    【18】C. N. Chen " Solution of beam on elastic foundation by DQEM ", J. Engrg.
    Mech., v124 , n12 , 1381-1384 (1998)

    【19】Gulkan, P. and Alemdar, B. N. " Exact finite element for a beam on a two-parameter elastic foundation " , Structural Engineering and Mechanics , v7 , n3 , 259-276(1999)

    【20】Eisenberger, M. and Yankelevsky, D.Z. "Exact stiffness matrix for beams on elastic foundation" , Computers and Structures, 21 , 1355-1359(1985)

    【21】 Shock & Vibration handbook , 2nd Edition, Edited by C.M. Harris and C.E. Crede, McGraw-Hill, Inc., 1976.

    【22】I.A. Karnovsky and O.I. Lebed, Formulas for Structural Dynamics: Tables,
    Graphs and Solutions, McGraw-Hill, Inc., 2001.

    【23】Chiwanga, M. and Valsangkar, A. J. " Generalised beam element on two-parameter elastic foundation ", J. Str. Div., ASCE , 14 , 1414-1427(1988)

    【24】H. Reismann & P. Pawlik “Elasticity , Theory and Application”, Wiley-Interscience , 226-228(1980)

    【25】H. DU,M. K. M. Liew AND M.K.Lim “Generalized Differential Quadrature Method for Buckling Analysis”, Journal of Engineering Mechanics , Vol. 122, No.2, February ,(1996)

    下載圖示 校內:2009-08-06公開
    校外:2009-08-06公開
    QR CODE