簡易檢索 / 詳目顯示

研究生: 洪雪花
Hung, Hsueh-Hua
論文名稱: 以CIP法模擬自由液面流場
Numerical Study of Free-Surface Flow Using CIP Method
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 71
中文關鍵詞: 自由液面
外文關鍵詞: Free surface, CIP
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文之目的在於以CIP(Cubic Interpolated Profile)法模擬自由液面及其流場變化,探討CIP法在不同粗細的網格捕抓自由液面情況,並研究黏滯力對流場的影響。流場控制方程式以三階準確的CIP法和二階準確有限體積中央差分分段計算,壓力部分的Poisson equation使用SOR(Successive Over-Relaxation)求解,黏滯項則以有限體積中央差分法去離散。

      模擬的物理問題為水壩潰堤和水珠掉落,首先以水壩潰堤驗證本程式的準確性和可靠性,再以水珠掉落探討本程式對曲面的模擬能力,並加入黏滯力的效應觀察流場變化,由模擬結果可知 CIP法對自由液面波形特性模擬效果佳,尤其加入黏滯力的粗網格其液面仍可維持一定平滑度;加入黏滯力使得動能消散,整個流場速度相較於無黏滯力的緩和,在水珠掉落的實驗中,更發現黏滯力對自由液面外形有其影響存在。

      The objective of this study aims at predicting the interfacial flow field with the CIP(Cubic Interpolated Profile) method. Influences of the grid-mesh resolution on the surface-capturing capability and of the consideration of the viscous term on the prediction accuracy of flow field are investigated. The governing equations can be split into the advection and non-advection term by the time splitting method, in which the advection terms are simulated using the CIP method with the third-order spatial accuracy, while the non-advection terms are discretized using the second-order cell-center finite-volume scheme. The Poisson equation for pressure field is solved using the SOR (Successive Over-Relaxation )method. The diffusion term is discretized by the second-order cell-center finite-volume scheme.

      Two test problems including a two-dimensional dam break problem and a problem of falling droplet on water surface are studied. The dam break problem in which these exists available experimental data is firstly studied to validate the computer model. Next, the simulation of the problem of falling droplet on water surface is performed by taking into consideration with and without the viscous effect. It is found that the CIP method is capable of capturing the free surface even with a coarse grid mesh with consideration of the viscous effect. Inclusion of the viscous effect in the modeling facilates smoothening the velocity distribution as compared to the simulation without considering the viscous effect. It is found that the viscous effect becomes more significant in the simulation of the free surface shape on the problem of falling on water surface.

    目錄………………………………………………………………………a 圖目錄……………………………………………………………………d 符號說明…………………………………………………………………k 摘要………………………………………………………………………m 第一章 緒論……………………………………………………………1 1.1 前言……………………………………………………………1 1.2 文獻回顧………………………………………………………2 1.3 研究目的………………………………………………………5 第二章 數值方法………………………………………………………6 2.1 控制方程式……………………………………………………6 2.2 流場演算程序…………………………………………………8 2.3 壓力場計算……………………………………………………10 2.4 黏滯擴散項的離散……………………………………………11 2.5 網格配置………………………………………………………11 2.6 CIP法介紹 ……………………………………………………12 2.7 自由液面流場處理……………………………………………14 第三章 結果與討論……………………………………………………17 3.1 二維水壩潰堤 ………………………………………………17 (1) 物理問題簡述和初始條件建立……………………………17 (2) 流場結構分析………………………………………………17 a.1 網格15X50 (無黏滯力)………………………………………17 b.1 網格30X100 (無黏滯力)………………………………………18 a.2 網格15X50 (有黏滯力)………………………………………19 b.2 網格30X100 (有黏滯力)………………………………………20 (3) 結果與實驗比較……………………………………………20 (4) 討論…………………………………………………………20 3.2 二維水珠掉落…………………………………………………22 (1)物理問題簡述和初始條件建立 …………………………………22 (2) 流場結構分析 …………………………………………22 c.1 網格15X50 (有黏滯力)………………………………………22 c.2 網格30X100 (有黏滯力)………………………………………23 (3) 討論…………………………………………………………24 第四章 結論與建議 …………………………………………………26 引用文獻 ………………………………………………………………27 附錄A …………………………………………………………………70

    [1]Hirt, C.W., and Nichols, B.D., : Volume-of-Fluid(VOF)Method for the Dynamics of Free Boundary, J. Comput. Phys. , Vol.39, pp.201-225 (1979)

    [2]Osher, S., and Sethian, J. A., : Fronts Propagating with Curvarture Dependent Speed Algorithms Based on Hamilton –Jacobi Formulations, J. Comput. phys.,
    Vol.79, pp.12-49 (1988)

    [3]Harlow, F.H., and Welch, J.E., : Numerical Calculation of Time – Dependent Viscous Incompressible Flow , Phys. Fluids , Vol.8, pp.2182-2189 (1965)

    [4] Hirt, C.W., Nichols, B.D. , and Romero, N.C., : SOLA Numerical Solution Alogrithm for Transient Fluid Flows , Los Alamos Scientific Laboratory Report LA-5852 (1975)

    [5] Takewaki, H., Nishiguchi, A., and Yabe, T., : Cubic Interpolated Pseudoparticle Method (CIP) for Solving Hyperbolic Type Equations, J. Comput. Phys., Vol.61 , pp.261-268(1985).

    [6] Yabe, T., and Xiao, F., : Description of Complex and Sharp Interface with Fixed Grids in Incompressible and Compressible Fluid , Computers Math. Applic.,Vol. 29, No. 1, pp. 15-25, (1995)

    [7] Yabe, T., and Xiao, F., : Description of Complex and Sharp Interface during Shock Wave Interaction with Liquid Drop , J. Phys. Soc. Japan, Vol.62, pp.2537-2540 (1993)

    [8] Yabe, T., and Xiao, F., and Moch, H., : Simulation of Technique for Dynamic Evaporation Process ,Nuclear Engineering and Design,Vol.155, pp.45-53,(1995)

    [9] Xiao, F., Yabe, T. , Ito, T., and Tajima, M., : An Algorithm for Simulating Solid Objects Suspended in Stratified Flow, Comput. Phys. Commun., Vol.102,pp.147-160 (1997).

    [10] Yabe, T., and Wang, P.Y., : Unified Numerical Procedure for Compressible and Incompressible Fluid, J. Phys. Soc. Japan , Vol.60, pp.2105-2108 (1991).

    [11] Xiao, F., : A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows , J. Comput. Phys.,Vol .155,pp. 348–379 (1999)

    [12]More, R.M., and Warren, D. A., : A New Quotidian Equation of State(QEOS) for Hot Mass Dense Matter, Phys. Fluids., Vol.31, pp.3059-3078 (1988)

    [13] Chorin, A.J., : A Numerical Method for Solving Incompressible Viscous Flow Problem, J. Comput. Phys., Vol. 2, pp.12–26 (1967)

    [14] Yoon, S., and Yabe, T., : The Unified Simulation for Incompressible and Compressible Flow by Predictor-Corrector Scheme Based on CIP Method.
    Comput. Phys. Commun., Vol.119, pp.149-158 (1999).

    [15]Francis, H., and Harlow, J., : Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,
    Phys. Fluids, Vol.8 , pp.2182-2189 (1965)

    [16] Landshoff, R., : A Numerical Method for Treating Fluid Flow in the Pressure of Shock, J. Comput. Phys. Vol.36 , pp.281-297 (1980)

    [17] Boris, J. P., and BooK, D.L., : Flux-Corrected Transport I. SHASTA, a Fluid Transport Algorithm That Works . J. Comput. Phys., Vol.11, pp.38-49 (1973)

    [18] Yabe, T., Xiao, F., and Zhang, Y.,: Strategy for Unified Solution of Solid, Liquid, Gas and Plasmas , AIAA paper 99-3509, 30th AIAA Fluid Dynamics Conference, 28June 1-July 1999, Norfolk, USA

    [19] Press, W. H., Flannery, B. P., and Teukolsky, S. A., : Numerical Recipes Cambridge University Press, Cambridge, (1986), Chap. 17.

    [20] Martin, J.C., and Moyce, W.J. :An Experimental Study of The Collapse of Liquid Columns On A Rigid Horizontal Plane, Philosophical Transactions of Royal Society of London, Series A. Physical Sciences and Engineering. Vol.244 ,pp.312-324 (1952)

    [21]嚴介庭 :自由液面流場之程式研發,國立成功大學航太研究所碩士論文,91年。

    [22] Nakamura, T., Tanaka, R., Yabe, T., and Takizawa, K., : Exactly Conservative Semi-Lagrangian Scheme for Multi-Dimensional Hyperbolic Equations with Directional Splitting Technique, J. Comput. Phys., Vol.174 , pp.171-207 (2001).

    [23]張智豪 : 發展多元流體液面捕抓法以計算不可壓縮具自由液面流場, 國立成功大學航太研究所博士論文,87年。

    下載圖示 校內:2006-07-12公開
    校外:2007-07-12公開
    QR CODE