簡易檢索 / 詳目顯示

研究生: 林敬智
Lin, Ching-Chih
論文名稱: 高效率自主三維磁通密度測量系統之研究
A Study on an Autonomous System for High-Efficiency Three-Dimensional Magnetic Flux Density Measurement
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 113
中文關鍵詞: 自主磁通密度量測適應性網格細化電腦輔助設計分析與量測三軸霍爾探棒徑向基函數插值
外文關鍵詞: Autonomous Magnetic Flux Density Measurement, Adaptive Mesh Refinement, CAD / CAE / CAM, 3D Hall Probe, Radial Basis Function Interpolation
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球電動車、風力發電與綠能技術的發展以及工業自動化對高效能驅動系統需求的增加,智慧馬達的精度、效率與功能性要求不斷提升,現代產業需求為確保智慧馬達之性能,傳統磁通密度的密集量測方法難以滿足量測精度與效率的需求。本研究提出一種基於三維磁通密度量測平台的自主測量解決方案,透過適應性網格細化技術結合磁樣本的模型與模擬數據,自動生成磁通密度測量點,降低測量點數與時間。同時,結合影像歸位與座標轉換技術,對3D列印磁樣本進行精確定位,實現自主化測量。同時引入徑向基函數插值方法,進行未量測區域磁通密度的數據插值,實現低失真三維磁通密度重建。本研究有效提升磁通密度量測效率與準確性,並為智慧馬達測量技術的進一步發展提供了新方向。

    The rapid advancements in electric vehicles, wind power, green energy technologies, and the growing demand for high-performance drive systems in industrial automation have increased the requirements for precision, efficiency, and reliability in motor technology. Conventional dense magnetic flux density measurement methods often fail to achieve a balance between precision and efficiency, limiting their applicability in modern industries. This study introduces an autonomous three-dimensional magnetic flux density measurement platform to address these limitations. By employing adaptive mesh refinement techniques integrated with CAD models and simulation data of magnetic test objects, the platform automatically generates measurement points, reducing the required number of measurement points and measurement time. It also leverages visual localization and homogeneous coordinate transformation techniques to enable precise positioning and autonomous measurement of 3D-printed magnetic samples. Additionally, the use of radial basis function interpolation estimates magnetic flux density in unmeasured regions, achieving low-distortion 3D magnetic flux density reconstruction. This innovative approach enhances measurement efficiency and accuracy, paving the way for further advancements in smart motor measurement technologies.

    摘要 I 誌謝 XX 目錄 XXI 表目錄 XXIV 圖目錄 XXV 符號表 XXVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 8 1.4 論文架構 9 第二章 電腦輔助設計分析量測與三維磁通密度量測平台 11 2.1 磁樣本CAD與金屬3D列印技術 13 2.1.1 解角器軟磁樣本 13 2.1.2 R型硬磁樣本 16 2.2 磁樣本CAE磁通密度模擬 18 2.2.1 CAE模擬軟體 18 2.2.2 CAE模擬條件與結果 18 2.3 CAE磁通密度影像輸出灰階影像 20 2.4 三軸霍爾探棒與高斯計 21 2.5 三維磁通密度量測平台 23 2.6 三軸霍爾探棒與磁性待測物探測距離測定 26 2.7 磁樣本直接密集法量測 28 2.7.1 解角器軟磁樣本直接密集量測之磁通密度分布圖 28 2.7.2 R型硬磁樣本直接密集量測之磁通密度分布圖 30 第三章 適應性網格生成量測點 32 3.1 矩形法計算 35 3.2 適應性網格細化產生磁通密度量測座標 38 3.2.1 解角器軟磁樣本適應網格細化計算 38 3.2.2 R型硬磁樣本適應網格細化計算 40 第四章 磁樣本定位與性能指標 44 4.1 影像辨識磁樣本影像歸位 44 4.2 齊次座標轉換 46 4.3 插值計算 49 4.3.1 RBF插值計算 49 4.3.2 加權參數計算 50 4.3.3 基函數與形狀因子 50 4.4 性能指標 51 4.4.1 磁通影像線性相關性比對 51 4.4.2 插值結果誤差評估與相似度比對 52 第五章 實驗結果與分析 54 5.1 磁樣本定位結果 55 5.2 適應網格量測結果 58 5.2.1 解角器軟磁樣本磁通密度量測結果 58 5.2.2 R型硬磁樣本磁通密度量測結果 62 5.3 RBF插值結果 66 5.3.1 解角器軟磁樣本RBF插值結果 66 5.3.2 R型硬磁樣本RBF插值結果 68 5.4 量測結果與討論 69 第六章 結論與未來研究建議 73 6.1 結論 73 6.2 未來研究建議 74 參考文獻 76 自述 81

    [1] Sharp-Eyed Precision Machinery Co., Ltd., "CNC 3D measuring device." [Online]. Available: https://www.sharp-eyed.com/msg/CNC-3D-Measuring-Device.html. [Accessed: Sept. 1, 2024].
    [2] G. He, Y. Sang, K. Pang, and G. Sun, “An improved adaptive sampling strategy for freeform surface inspection on CMM,” Int J Adv Manuf Technol, vol. 96, no. 1–4, pp. 1521–1535, 2018.
    [3] Z. Han, S. Liu, F. Yu, X. Zhang, and G. Zhang, “A 3D measuring path planning strategy for intelligent CMMs based on an improved ant colony algorithm,” Int J Adv Manuf Technol, vol. 93, no. 1–4, pp .1487–1497, 2017.
    [4] D. F. Elkott, H. A. Elmaraghy, and W. H. Elmaraghy, “Automatic sampling for CMM inspection planning of free-form surfaces,” International Journal of Production Research, vol. 40, no. 11, pp .2653–2676, 2002.
    [5] Y. Sang, Y. Yan, C. Yao, and G. He, “A new scanning lines distribution strategy for the form error evaluation of freeform surface on CMM,” Measurement, vol. 181, Art no. 109578, 2021.
    [6] P. An, H. Zhao, R. Wang, and C. Zhang, “The recent progress and the state-of-art applications for different Types of Hall Effect,” J. Phys.: Conf. Ser., vol. 2386, no. 1, Art no. 012061, 2022.
    [7] S. Angelopoulos, D. Misiaris, G. Banis, K. Liang, P. Tsarabaris, A. Ktena, and E. Hristoforou, “Steel health monitoring device based on Hall sensors,” Journal of Magnetism and Magnetic Materials, vol. 515, Art no. 167304, 2020.
    [8] S. Hao, P. Shi, S. Su, and T. Liang, “Evaluation of defect depth in ferromagnetic materials via magnetic flux leakage method with a double Hall sensor,” Journal of Magnetism and Magnetic Materials, vol. 555, Art no. 169341, 2022.
    [9] Goudsmit Magnetics, "Measuring instruments and tools: gauss meter / tesla meter." [Online]. Available: https://www.goudsmitmagnetics.com/en-us/products/measuring-instruments-and-tools/gauss-meter-tesla-meter. [Accessed: Sept. 1, 2024].
    [10] C. H. Yang and M. C. Tsai, “Measurement of magnetic fields by B-spline method,” Journal of Magnetism and Magnetic Materials, vol. 304, no. 1, pp. e460–e463, 2006.
    [11] C. H. Yang and M. C. Tsai, “Magnetic flux density tracking control for the measurement of isomagnetic lines,” IEEE Trans. Magn., vol. 44, no. 1, pp. 43–51, 2008.
    [12] 楊君賢, “三維磁通密度量測與磁場追蹤控制之研究,” 博士論文, 國立成功大學機械工程學系, 2007年.
    [13] Z. Liu, G. Tian, W. Cao, X. Dai, B. Shaw, and R. Lambert, “Non‐invasive load monitoring of induction motor drives using magnetic flux sensors,” IET Power Electronics, vol. 10, no. 2, pp. 189–195, 2017.
    [14] 松本機電. TD8415產品網頁. Retrieved September 16, 2024, from http://www.sbjd88.com/products/td8415.html
    [15] C. Zhang, X. Li, L. Jiang, D. Tang, H. Xu,P. Zhao,J. Fu,Q. Zhou, and Y. Chen, “3D Printing of functional magnetic materials: from design to applications,” Adv Funct Materials, vol. 31, no. 34, Art no. 2102777, 2021.
    [16] T.-W. Chang, P.-W. Huang, S.-H. Kung, C.-H. Shih, M.-C. Tsai, C. U. Ubadigha, W.-C. Chang, and C.-C. Huang, “Fabrication of non-contact magnetic screws by additive manufacturing,” IEEE Trans. Magn., vol. 58, no. 8, pp. 1–5, 2022.
    [17] S.-T. Wu, P.-W. Huang, T.-W. Chang, I.-H. Jiang, and M.-C. Tsai, “Application of magnetic metal 3-D Printing on the integration of axial-flow impeller fan motor design,” IEEE Trans. Magn., vol. 57, no. 2, pp. 1–5, 2021.
    [18] K.-J. Jhong, T.-W. Chang, W.-H. Lee, M.-C. Tsai, and I.-H. Jiang, “Characteristic of high frequency Fe-Si-Cr material for motor application by selective laser melting,” AIP Advances, vol. 9, no. 3, Art no. 035317, 2019.
    [19] M. Ralchev, V. Mateev, and I. Marinova, “Magnetic properties of FFF/FDM 3D Printed magnetic material,” in 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria: IEEE, pp. 1–5, 2021.
    [20] C. Huber, C. Abert, F. Bruckner, M. Groenefeld, S. Schuschnigg, I. Teliban, C. Vogler, G. Wautischer, R. Windl, and D. Suess, “3D Printing of polymer-bonded rare-earth magnets with a variable magnetic compound fraction for a predefined stray field,” Sci Rep, vol. 7, no. 1, Art no. 9419, 2017.
    [21] T.-W. Chang, K.-W. Liao, C.-C. Lin, M.-C. Tsai*, and C.-W. Cheng, “Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning,” Int J Adv Manuf Technol, vol. 114, no. 9–10, pp. 3177–3184, 2021.
    [22] H.-Y. Chen, C.-C. Lin, M.-H. Horng, L.-K. Chang, J.-H. Hsu, T.-W. Chang, J.-C. Hung, R.-M. Lee, and M.-C. Tsai, “Deep learning applied to defect detection in powder spreading process of magnetic material additive manufacturing,” Materials, vol. 15, no. 16, p. 5662, 2022.
    [23] L.-K. Chang, R.-S. Chen, M.-C. Tsai, R.-M. Lee, C.-C. Lin, J.-C. Huang, T.-W. Chang, and M.-H. Horng, “Machine learning applied to property prediction of metal additive manufacturing products with textural features extraction,” Int J Adv Manuf Technol, vol. 132, no. 1–2, pp. 83–98, 2024.
    [24] C. C. Lin, M. C. Tsai, L. K. Chang, and T. W. Chang, “Cyber-physical integration for automatic measurement of magnetic positioning,” in Proc. 18th Int. Conf. Autom. Technol., Kinmen, Taiwan, 2021.
    [25] 林敬智, 林宜謙, 劉秉議, 張廉楷, 蔡明祺, 張宗偉, “智動化三維磁通密度量測平台之建置,” 中國機械工程學會第三十八屆全國學術研討會論文集, 國立成功大學, 2021年
    [26] F. Tootoonchian and Z. Nasiri-Gheidari, “An optimized axial flux variable reluctance resolver with concentric windings,” in 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran: IEEE, pp. 1284–1290, 2016.
    [27] T.-W. Chang, P.-W. Huang, W.-C. Huang, C.-C. Huang, C.-C. Mo, and M.-C. Tsai, “Additive manufacturing high fault-tolerant axial flux variable reluctance resolver,” IEEE Trans. Magn., vol. 59, no. 11, pp. 1–5, 2023.
    [28] E. M. Sefene, “State-of-the-art of selective laser melting process: A comprehensive review,” Journal of Manufacturing Systems, vol. 63, pp. 250–274, 2022.
    [29] 黃偉宸, “積層製造應用於軸向型磁阻解角器之設計,” 碩士論文, 國立成功大學電機工程學系, 電機設計與驅動產業碩士班, 2022年.
    [30] “Materialise MiniMagics | Free STL and 3MF viewer.” Available: https://www.materialise.com/en/industrial/software/minimagics. [Accessed: Sept. 1, 2024]
    [31] 東台精機,“AMP-160型錄,” Available: https://www.tongtai.com.tw/tw/product-detail.php?id=315. [Accessed: Sept. 1, 2024]
    [32] ANSYS, “ANSYS 官方網站,” Available: https://www.ansys.com/zh-tw. [Accessed: June 30, 2024].
    [33] 林宜謙, “三維磁通密度快速與精確磁性元件量測之研究,” 碩士論文, 國立成功大學機械工程學系, 2023年.
    [34] T. L. Chow, “Introduction to electromagnetic theory: A modern perspective,” Jones and Bartlett Publisher, 2006.
    [35] F.W. Bell, "8030儀器手冊,” Available: https://fwbell.com/. [Accessed: Sept. 1, 2024].
    [36] 羅技(Logitech),“BRIO ULTRA HD PRO 商務網路攝影機,” Available: https://www.logitech.com/zh-tw/products/webcams/brio-4k-hdr-webcam.960-001105.html#specs. [Accessed: Sept. 1, 2024].
    [37] Z. Cendes and D. Shenton, “Adaptive mesh refinement in the finite element computation of magnetic fields,” IEEE Trans. Magn., vol. 21, no. 5, pp. 1811–1816, 1985.
    [38] R. Verfürth, “A posteriori error estimation and adaptive mesh-refinement techniques,” Journal of Computational and Applied Mathematics, vol. 50, no. 1, pp. 67–83, 1994.
    [39] S. A. Funken and A. Schmidt, “Adaptive mesh refinement in 2D – An efficient implementation in Matlab,” Computational Methods in Applied Mathematics, vol. 20, no. 3, pp. 459–479, 2020.
    [40] MATLAB (2019) version 9.7.0.1190202 (r2019b).
    [41] Y. Yan, Y. Song, and A. L. Boyer, “An investigation of a video-based patient repositioning technique,” International Journal of Radiation Oncology*Biology*Physics, vol. 54, no. 2, pp. 606–614, 2002.
    [42] Matrox Imaging Library (MIL). https://info.matrox.com/imaging/mil-x/piecing-your-vision-together
    [43] R. P. Paul, “Robot Manipulators: Mathematics, Programming, and Control : the Computer Control of Robot Manipulators,” Richard Paul, 1981.
    [44] E. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates,” Computers & Mathematics with Applications, vol. 19, no. 8, pp. 127–145, 1990.
    [45] D. W. Pepper, C. Rasmussen, and D. Fyda, “A meshless method using global radial basis functions for creating 3-D wind fields from sparse meteorological data,” Computer Assisted Methods in Engineering and Science, vol. 21, no. 3–4, pp. 233–243, 2017.
    [46] M. J. D. Powell, “Radial basis functions for multivariable interpolation: a review,” in Algorithms for approximation, USA: Clarendon Press, pp. 143–167, 1987.
    [47] C.-C. Lin and M.-C. Tsai, "3D magnetic flux density measurement with reduced sampling and high accuracy using visual localization and adaptive mesh generation," Int J Adv Manuf Technol, vol. 130, no. 5-6, pp.2985-2998, 2024.
    [48] C.-C. Lin, Y.-C. Lin, C.-W. Cheng, and M.-C. Tsai*, "Enhancing measurement efficiency for 3D printed magnet through radial basis function interpolation," Journal of Magnetism and Magnetic Materials, vol. 602, Art no. 172192, 2024.

    無法下載圖示 校內:2028-01-14公開
    校外:2028-01-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE