| 研究生: |
梁嘉茹 Liang, Jia-Ru |
|---|---|
| 論文名稱: |
GATA-4在糖尿病大鼠心臟對於抑制型旋轉蛋白調控之研究 Role of GATA-4 in the change of cardiac troponin I expression in type-1 diabetic rats |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 糖尿病 、心臟 、抑制型旋轉蛋白 |
| 外文關鍵詞: | GATA-4, diabetes, cardiac, troponin |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病性心肌病是糖尿病重要的併發症之一。在心臟相關病發症中,最終會導致左心室肥大以及心臟收縮舒張功能的異常,甚至心衰竭。目前已知高葡萄糖會造成細胞產生大量活性氧化物(ROS, Reactive oxygen species )造成氧化壓力。在實驗中,首先觀察到第一型糖尿病大鼠心輸出能力變弱,並且也發現抑制型旋轉蛋白表現量以及其轉錄因子GATA-4 ser105磷酸化程度顯著提高,若先以胰島素或Phlorizin矯正降低血糖後,則可回復抑制型旋轉蛋白的表現量,因此也指出高血糖確實影響抑制型旋轉蛋白表現量,並且GATA-4可能參與在此過程中,但目前仍沒有相關研究指出高葡萄糖造成GATA-4磷酸化的機制。過去研究指出,透過MEK/ERK可以直接磷酸化GATA-4,加強GATA-4轉錄活性,並且細胞核中GSK-3β則是負調控的作用促使GATA-4出核。因此利用高葡萄糖培養基(30 mmol/L)處理H9c2心肌細胞模擬高血糖的生理環境。實驗結果顯示高葡萄糖培養基會造成H9c2心肌細胞產生大量ROS,抑制型旋轉蛋白表現量顯著提高以及GATA-4 ser105磷酸化程度也明顯上升。若前處理活性氧化物清除劑Tiron(100 nmol/L)以及ERK阻斷劑PD98059(20 μmol/L) 則可以抑制高葡萄糖培養基所造成的改變。另外也發現隨著高葡萄糖處理的時間,GATA-4在細胞核內分佈以及不活化態的GSK-3β ser9磷酸化也是隨之增加,若前處理活性氧化物清除劑以及ERK阻斷劑可以降低GATA-4細胞核分佈數量以及GSK-3β ser9磷酸化程度。若以GATA4 RNAi將細胞內GATA4 mRNA沉默化後,細胞內抑制型心肌旋轉蛋白表現量並不會受到高葡萄糖影響。利用Phenylephrine(PE)刺激H9c2細胞探討抑制型肌旋轉蛋白表現量改變對於心肌收縮能力的影響。實驗結果中,與控制組相比,高葡萄糖培養基處理H9c2心肌細胞加入PE (1 μmol/L)後細胞收縮能力明顯,而GATA-4 RNAi高葡萄糖組H9c2心肌細胞在加入PE後,其細胞收縮能力則不受到高葡萄糖之影響。綜合以上結果,高葡萄糖確實會透過增加GATA-4轉錄能力造成抑制型心肌旋轉蛋白高表現,最終導致細胞收縮能力降低,在動物模式上,亦可觀察到心輸出量減少。
Diabetic cardiomyopathy as diabetes-specific complication refers to a disease process which eventually leads to left ventricular hypertrophy and diastolic and systolic dysfunction. Recent reports have shown that hyperglycemia induces reactive oxygen species (ROS) in cardiomyocytes, which contributes to diabetic cardiomyopathy. In this study, we observed the lower cardiac output in STZ-induced diabetic rats. The expression of cardiac troponin I (cTnI) and level of GATA-4 phosphorylation was increased. This changes could be reversed by insulin or phlorizin pretreatment. We also demonstrated that the condition of hyperglycemia was failed to increased the expression of cTnI, when GATA-4 is absent. Activation of ERK is known as its ability to phosphorylate serine105 of GATA4, and this had been reported to increase the DNA binding activity of this transcription factor. On the other hand, GSK-3β could directly interact with GATA-4 and cause GATA4 exported from nuclear. In current study, ROS production, higher level of cTnI expression and GATA-4 phosphorylation were observed in high glucose (HG)-treated H9c2 cells. GATA-4 nuclear translocalization and GSK-3β ser9 phosphorylation level were elevated in HG treated H9c2 cells. These changes could be reversed in the presence of tiron (ROS scavengers) , PD98059 (MEK/ERK inhibitors), and GATA-4 RNAi. Results of cell contractility assay also indicate that HG decreased contractility of H9c2 cells. Further more, contractilities was not affected by HG in H9c2 cells after GATA-4 knockdown. Taken together, we have demonstrated that hyperglycemia cause systolic dysfunction and elevatd expression of cTnI in cardiomyocytes through GATA-4 phosphorylation.
1. Rathmann, W. and G. Giani, Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030 - Response to Wild et al. Diabetes Care, 2004. 27(10): p. 2568-2569.
2. Alberti, K.G.M.M., P.Z. Zimmet, and W. Consultation, Definition, diagnosis and classification of diabetes mellitus and its complications part 1: Diagnosis and classification of diabetes mellitus - Provisional report of a WHO consultation. Diabetic Medicine, 1998. 15(7): p. 539-553.
3. Kannel, W.B. and D.L. McGee, Diabetes and cardiovascular disease. The Framingham study. JAMA, 1979. 241(19): p. 2035-8.
4. Ramirez-Correa, G.A., et al., Calcium sensitivity, force frequency relationship and cardiac troponin I: critical role of PKA and PKC phosphorylation sites. J Mol Cell Cardiol, 2010. 48(5): p. 943-53.
5. Orkin, S.H., GATA-binding transcription factors in hematopoietic cells. Blood, 1992. 80(3): p. 575-81.
6. Orkin, S.H., Embryonic stem cells and transgenic mice in the study of hematopoiesis. Int J Dev Biol, 1998. 42(7): p. 927-34.
7. Molkentin, J.D., The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem, 2000. 275(50): p. 38949-52.
8. Oka, T., J. Xu, and J.D. Molkentin, Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol, 2007. 18(1): p. 117-31.
9. Kuo, C.T., et al., GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev, 1997. 11(8): p. 1048-60.
10. Molkentin, J.D., et al., Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev, 1997. 11(8): p. 1061-72.
11. Nemer, G., et al., A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat, 2006. 27(3): p. 293-4.
12. Garg, V., et al., GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature, 2003. 424(6947): p. 443-7.
13. Kitta, K., et al., Endothelin-1 induces phosphorylation of GATA-4 transcription factor in the HL-1 atrial-muscle cell line. Biochem J, 2001. 359(Pt 2): p. 375-80.
14. Kitta, K., et al., Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem, 2003. 278(7): p. 4705-12.
15. Oka, T., et al., Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res, 2006. 98(6): p. 837-45.
16. Aries, A., et al., Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc Natl Acad Sci U S A, 2004. 101(18): p. 6975-80.
17. Liang, Q., et al., The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem, 2001. 276(32): p. 30245-53.
18. Hasegawa, K., et al., cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation, 1997. 96(11): p. 3943-53.
19. Herzig, T.C., et al., Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci U S A, 1997. 94(14): p. 7543-8.
20. Morimoto, T., et al., Phosphorylation of GATA-4 is involved in alpha 1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes. J Biol Chem, 2000. 275(18): p. 13721-6.
21. Hilsenrath, J., et al., Pitfalls in prediction of coronary arterial obstruction from patterns of anterior infarction on electrocardiogram and vectorcardiogram. Am J Cardiol, 1972. 29(2): p. 164-70.
22. Spector, K.S., Diabetic cardiomyopathy. Clin Cardiol, 1998. 21(12): p. 885-7.
23. Tziakas, D.N., G.K. Chalikias, and J.C. Kaski, Epidemiology of the diabetic heart. Coron Artery Dis, 2005. 16 Suppl 1: p. S3-S10.
24. Cai, L., et al., Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 2002. 51(6): p. 1938-48.
25. Wold, L.E. and J. Ren, Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 map kinase-dependent oxidative stress mechanism. Biochem Biophys Res Commun, 2004. 318(4): p. 1066-71.
26. Zhou, Y.T., et al., Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1784-9.
27. Barouch, L.A., et al., Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation, 2003. 108(6): p. 754-9.
28. Brownlee, M., Advanced protein glycosylation in diabetes and aging. Annu Rev Med, 1995. 46: p. 223-34.
29. Cai, L., et al., Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol, 2006. 48(8): p. 1688-97.
30. Liang, Q., et al., Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes, 2002. 51(1): p. 174-81.
31. Matsushima, S., et al., Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Am J Physiol Heart Circ Physiol, 2006. 291(5): p. H2237-45.
32. Ye, G., et al., Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes, 2004. 53(5): p. 1336-43.
33. Shen, X., et al., Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 2006. 55(3): p. 798-805.
34. Kwon, S.H., et al., H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol, 2003. 35(6): p. 615-21.
35. Guo, M., et al., Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics, 2003. 12(2): p. 139-46.
36. Koya, D. and G.L. King, Protein kinase C activation and the development of diabetic complications. Diabetes, 1998. 47(6): p. 859-66.
37. Wakasaki, H., et al., Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci U S A, 1997. 94(17): p. 9320-5.
38. Bidasee, K.R., et al., Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes, 2003. 52(7): p. 1825-36.
39. Candido, R., et al., A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res, 2003. 92(7): p. 785-92.
40. Herrmann, K.L., A.D. McCulloch, and J.H. Omens, Glycated collagen cross-linking alters cardiac mechanics in volume-overload hypertrophy. Am J Physiol Heart Circ Physiol, 2003. 284(4): p. H1277-84.
41. Clark, R.J., et al., Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem, 2003. 278(45): p. 44230-7.
42. Galvez, A.S., et al., Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J Biol Chem, 2003. 278(40): p. 38484-94.
43. Cai, L., Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med, 2006. 41(6): p. 851-61.
44. Kimura, A., et al., Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet, 1997. 16(4): p. 379-82.
45. Kostareva, A., et al., Deletion in TNNI3 gene is associated with restrictive cardiomyopathy. Int J Cardiol, 2009. 131(3): p. 410-2.
46. Lamirault, G., et al., Gene expression profile associated with chronic atrial fibrillation and underlying valvular heart disease in man. J Mol Cell Cardiol, 2006. 40(1): p. 173-84.
47. Grzeskowiak, R., et al., Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc Res, 2003. 59(2): p. 400-11.
48. Barrans, J.D., et al., Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol, 2002. 160(6): p. 2035-43.
49. Ito, H., et al., Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res, 1991. 69(1): p. 209-15.
50. Ito, H., et al., Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation, 1993. 87(5): p. 1715-21.
51. Murphy, A.M., et al., Regulation of the rat cardiac troponin I gene by the transcription factor GATA-4. Biochem J, 1997. 322 ( Pt 2): p. 393-401.
52. Bhavsar, P.K., et al., Identification of cis-acting DNA elements required for expression of the human cardiac troponin I gene promoter. J Mol Cell Cardiol, 2000. 32(1): p. 95-108.
53. Philips, A.S., J.C. Kwok, and B.H. Chong, Analysis of the signals and mechanisms mediating nuclear trafficking of GATA-4. Loss of DNA binding is associated with localization in intranuclear speckles. J Biol Chem, 2007. 282(34): p. 24915-27.
54. Morisco, C., et al., Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J Biol Chem, 2001. 276(30): p. 28586-97.
55. Charron, F., et al., Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev, 2001. 15(20): p. 2702-19.
56. Liang, Q., et al., The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol, 2001. 21(21): p. 7460-9.
57. Muniyappa, R., et al., Cardiovascular actions of insulin. Endocr Rev, 2007. 28(5): p. 463-91.
58. Kerkela, R., et al., Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. Journal of Clinical Investigation, 2008. 118(11): p. 3609-18.
59. Stambolic, V. and J.R. Woodgett, Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J, 1994. 303 ( Pt 3): p. 701-4.
60. Cross, D.A., et al., Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995. 378(6559): p. 785-9.
61. Tanji, C., et al., A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta ) and mediates protein kinase A-dependent inhibition of GSK-3beta. J Biol Chem, 2002. 277(40): p. 36955-61.
62. Shin, S.Y., et al., Phosphorylation of glycogen synthase kinase-3beta at serine-9 by phospholipase Cgamma1 through protein kinase C in rat 3Y1 fibroblasts. Exp Mol Med, 2002. 34(6): p. 444-50.
63. Markou, T., et al., Glycogen synthase kinases 3alpha and 3beta in cardiac myocytes: regulation and consequences of their inhibition. Cell Signal, 2008. 20(1): p. 206-18.
64. Badorff, C., et al., Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. Journal of Clinical Investigation, 2002. 109(3): p. 373-81.
65. Antos, C.L., et al., Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A, 2002. 99(2): p. 907-12.
66. Bonni, A., et al., Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999. 286(5443): p. 1358-62.
67. Abe, J., C.P. Baines, and B.C. Berk, Role of mitogen-activated protein kinases in ischemia and reperfusion injury : the good and the bad. Circ Res, 2000. 86(6): p. 607-9.
68. Clerk, A., A. Michael, and P.H. Sugden, Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J, 1998. 333 ( Pt 3): p. 581-9.
69. Takeishi, Y., et al., Differential regulation of p90 ribosomal S6 kinase and big mitogen-activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts. Circ Res, 1999. 85(12): p. 1164-72.
70. Babu, G.J., et al., Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J Mol Cell Cardiol, 2000. 32(8): p. 1447-57.
71. Ueyama, T., et al., Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol, 2000. 32(6): p. 947-60.
72. Clerk, A., et al., Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem, 1994. 269(52): p. 32848-57.
73. Naito, Z., et al., Different influences of hyperglycemic duration on phosphorylated extracellular signal-regulated kinase 1/2 in rat heart. Exp Mol Pathol, 2003. 74(1): p. 23-32.
74. Johnstone, M.T., et al., Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 1993. 88(6): p. 2510-6.
75. Fogelson, B.G., et al., Diabetic patients produce an increase in coronary sinus endothelin 1 after coronary artery bypass grafting. Diabetes, 1998. 47(7): p. 1161-3.
76. Takeishi, Y., et al., Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovasc Res, 2002. 53(1): p. 131-7.
77. Kolta, M.G., L.J. Wallace, and M.C. Gerald, Streptozocin-induced diabetes affects rat urinary bladder response to autonomic agents. Diabetes, 1985. 34(9): p. 917-21.
78. Chen, J.S., et al., Attenuation of mouse mesangial cell contractility by high glucose and mannitol: involvement of protein kinase C and focal adhesion kinase. J Biomed Sci, 2004. 11(2): p. 142-51.
79. Lowry, O.H., et al., Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.
80. Rossetti, L., et al., Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. Journal of Clinical Investigation, 1987. 79(5): p. 1510-5.
81. Devereux, R.B., et al., Impact of diabetes on cardiac structure and function: the strong heart study. Circulation, 2000. 101(19): p. 2271-6.
82. Galderisi, M., et al., Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol, 1991. 68(1): p. 85-9.
83. Fiordaliso, F., et al., Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol, 2004. 37(5): p. 959-68.
84. Kobayashi, S., et al., Diminished GATA4 protein levels contribute to hyperglycemia-induced cardiomyocyte injury. J Biol Chem, 2007. 282(30): p. 21945-52.