簡易檢索 / 詳目顯示

研究生: 王智永
Wang, Chih-Yung
論文名稱: 應用於濃硫酸之薄膜水份感測器研究
On Thin Film Water Sensor for Highly Concentrated Sulfuric Acid
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 155
中文關鍵詞: 濃硫酸水份感測器
外文關鍵詞: sulfuric acid, water content sensor
相關次數: 點閱:49下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫酸因為其特殊的物理及化學性質,大量的運用在工業製造過程中,所以被稱為「工業之母」。正因為如此,監控濃硫酸中水分含量在工業製程上是非常重要的,然而有關濃硫酸水分感測器的研究卻非常少,僅一光學感測器,其餘皆為傳統的方法,包括滴定法、比重法及Karl Fisher法。但是用這些方法來量測濃硫酸的水分是費時以及操作繁雜的,並無法迅速的量測到濃硫酸中的水分,這在工業製程中是很不便以及沒有效率的。所以發展出一個簡單、價廉、較快速應答以及可安裝在濃硫酸有關的製程上,做為現場監控濃硫酸中少量水分的感測器是相當重要及需要的。

    在此研究中以IrO2+Ta2O5的DSA (Dimensional stable anode) 為對電極,並搭配其他材料的工作電極來對90~100%濃度的濃硫酸進行感測。一開始是先以三極式的系統對濃硫酸中水份進行感測,之後再進行感測器的微小化,並利用減小工作電極與增大對電極的面積來設計一個二極式的微感測器來感測濃硫酸中水份是相當重要而且相當有趣的課題。

    在濃硫酸含水量感測結果中,以濺鍍矽電極有著最高的靈敏度,但是耐久性與感測電流穩定性則以類鑽碳薄膜較佳。雖然類鑽碳薄膜對於含水量之靈敏度比矽電極要差一些,但是藉由在類鑽碳薄膜中摻雜少量矽原子,可以增加對水份之靈敏度,隨著摻雜入10.2、20.3與31.8at%的矽原子時,對水份的靈敏度也隨之增加為3.5019、6.0182與8.9876 mA/cm2*wt%,並在摻雜入10.2at%的矽原子時,可以比原來的類鑽碳薄膜有著更佳的耐腐蝕性。除了摻雜矽原子之外,同時也探討了施加偏壓對於濺鍍類鑽碳薄膜的影響。類鑽碳薄膜在施加-90V偏壓時具有最佳的耐腐蝕性,而在-60V與-75V所濺鍍而成的類鑽碳薄膜都在尚未完成全部感測時電流已開始呈現不穩定的狀態了。

    並對各種電極進行加速性與的耐久性測試,藉由比較其壽命可以知道其耐久度的相對關係,以瞭解在不同製備條件、電極材料與及成分比例對電極耐久度的影響。

    Sulfuric acid is widely used in industry because of its important chemical and physical properties and it is called “the mother of industry”. It is very important to monitor the water content of sulfuric acid in industry process. However, the study about water content sensor for sulfuric acid is few. There is only one spectroscopic sensor. The others are traditional methods including titration method, hydrometer method and Karl Fisher method. These methods are still time-consumed and cumbersome in operation for determination the water content of the concentrated sulfuric acid. It is inefficient and inconvenient in industrial process if the water content of concentrated sulfuric acid can not be determined in a short time. Therefore, it is important and necessary to develop a simple, low cost and faster response sensor for instantaneously detecting the water content of the concentrated sulfuric acid by an electrochemical method which can be in situ applied in the processes related to concentrated sulfuric acid.
    In this study, DSA electrode coated with IrO2+Ta2O5 was used as the counter electrode and combined with other materials as the working electrode to sense the water content in sulfuric acid in the range of 90~100wt%. A three-electrode system was used to determine the water content in concentrated sulfuric acid at first, and then a microsensor for concentrated sulfuric acid was developed. To develop a microsenor was an interesting and important topic. It was tried to decrease the surface area of working electrode and increased in the counter electrode surface area to develop a two-electrode microsensor without reference electrode. And it would be much easier to reduce the size of the microsenor in this way.
    The results of water content sensing performance in concentrated sulfuric acid showed that sputtered silicon electrode had the best sensitivity, and diamond-like carbon (DLC) electrode had the best durability and the most stable signal. Although the sensitivity of DLC for water content was a little worse than that of silicon electrode, it could be improved when small amount silicon was doped. As 10.2、20.3 and 31.8at% (at: atoms) silicon was doped, the sensitivities of DLC for water content were increased to 5.019、6.0182 and 8.9876 mA/cm2*wt%. The DLC thin film had better durability when 10.2at% silicon was doped. In addition to doped silicon in the DLC thin film, the effect of different bias voltage of the substrate for preparing electrode by sputtering was also discussed. The DLC thin film prepared with –90V bias had the best durability and the DLC thin film prepared with –60V and –75V bias got unstable before the sensing test was finished.
    The accelerated life tests for each kind of electrode were carried out. The relationship among durability and prepared condition、electrode materials and composition could be realized by comparing their service life of those durability tests.

    中文摘要..........................I 英文摘要..........................IV 誌謝............................VII 目錄............................VIII 表目錄...........................XI 圖目錄...........................XII 符號說明..........................XV 第一章 緒論........................ 1 1-1 感測器的簡介.......................1 1-2 微感測器簡介.......................3 1-3 硫酸的物理及化學性質...................6 1-4 硫酸產量及製程介紹....................9 1-4-1 硫酸產量........................9 1-4-2 硫酸製程介紹......................11 1-4-2-1 接觸法........................11 1-4-2-2 鉛室法.......................14 1-5 硫酸工業上之用途.....................14 1-6 研究動機與目的......................19 1-7 形狀安定陽極(DSA)的簡介 ............... . 21 1-8 類鑽碳(Diamond-like carbon)簡介............. 26 1-9 文獻回顧 ....................... .29 第二章原理..........................40 2-1真空濺鍍......................... 40 2-1-1 電漿..........................40 2-1-2 濺鍍..........................43 2-2 以濺鍍沈積法製備類鑽碳薄膜................44 2-3 微感測器設計原理.....................48 2-4 感測原理感測原理及反應機構................51 第三章 實驗設備與步驟.................... 61 3-1 藥品器材與儀器設備....................61 3-1-1 藥品..........................61 3-1-2 儀器設備........................62 3-2 DSA (IrO2+Ta2O5)電極的製備................64 3-2-1 鈦片的前處理.....................64 3-2-2 配製溶液及電極製作..................64 3-3 濺鍍矽電極的製備.....................65 3-3-1 三極式的濺鍍矽電極製備................65 3-3-2 微小化的濺鍍矽電極製備................65 3-4 氧化鋁薄膜電極之製備...................66 3-5 以濺鍍法製備類鑽碳薄膜..................67 3-6 微感測器之製作......................68 3-7 實驗步驟.........................68 第四章 結果與討論...................... 71 4-1以三極式電極感測濃硫酸中水份............... 71 4-1-1矽電極於三極式系統中的感測.............. 71 4-1-1-1以線性循環伏安法尋找適合感測電位......... 71 4-1-1-2 水份改變對矽電極感測電流之影響..........74 4-1-2 氧化鋁電極之感測結果..................76 4-2 以微感測器感測濃硫酸中之水份...............82 4-2-1 矽電極微感測器之感測.................82 4-2-1-1 矽電極微感測器之CV圖.............. 83 4-2-1-2 感測電位的影響..................83 4-2-1-3 感測溫度對於矽電極微感測器的影響.........86 4-2-1-4 攪拌對矽電極微感測器之影響............94 4-2-2 濺鍍石墨薄膜微感測器之感測.............. 96 4-2-3 類鑽碳薄膜電極微感測器之感測.............98 4-2-3-1 類鑽碳與石墨電極電位窗之比較...........98 4-2-3-2 類鑽碳薄膜微感測器之感測............ 101 4-2-3-3 施加偏壓對類鑽碳薄膜電極的影響......... 104 4-2-3-4 矽含量對於類鑽碳薄膜的影響........... 111 4-2-3-5 溫度對於類鑽碳薄膜的影響............ 119 4-2-3-6 攪拌對類鑽碳薄膜微感測器之影響......... 123 4-3 電極材料耐久性測試................... 129 4-3-1 浸鍍次數與鍍層氧化物關係.............. 129 4-3-2 加速性電極耐久度測試................ 134 4-4 理論與實驗結果之比較.................. 138 第五章 結論與建議..................... 142 5-1 結論.......................... 142 5-2 建議.......................... 147 參考文獻 附錄

    [1] A. de Olicveira-Sousa, M. S. A. Da Silva, S. A. S. Machado, L. A. Avaca, P. de Lima-Neto, Influence of the preparation Method on th Morphological and Electrochemical Properties of Ti/IrO2-Coated Electrodes, Electrochimica Acta, 4, 4467-4473, (2000).

    [2] A. Galdikas, S. Logothetidis, P. Patsalas, M. Gioti, L. Pranevicius, The Kinetics of Sputtered Deposited Carbon on Silicon: A Phenomenological Model, Diamond and Related Materials, 8, 490-494, (1999).

    [3] A. R. Bandy and J. C. Ianni, Study of the hydrates of H2SO4 Using Density Functional Theory, J. Phys. Chem. A, 102, 6533-6539, (1998).

    [4] A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, New York, (1980).

    [5] A. J. Arvia and J. S. W. Carrozza, The Electrolysis of Fuming Sulphuric Acids, Electrochimica Acta, Vol. 11, pp. 1641-1649, (1966).

    [6] A. J. Arvia, J. S. W. Carrozza and H. A. Garrera, Electrochemistry of Fuming Sulphuric Acids-III. Mechanism of The Cathodic Reations on Platinum, Electrochimia Acta, Vol. 16, pp. 79-87, (1971).

    [7] A. J. Terezo and E. C. Pereira, Preparation and Characterization of Ti/RuO2-Nb2O5 Electrodes Obtained by Polymeric Precursor Method, Electrochimica Acta, 44, 4507-4513, (1999).

    [8] C. A. Davis, A Simple Model for the Formation of Compressive Stress in Thin Films by Ion Bombardment, Thin Solid Films, 226, 30-34, (1993).

    [9] C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, M. Belin, Wear-Resistant Fluorinated Diamondlike Carbon Films, Surface and Coatings Technology, 94-95, 531-536, (1997).

    [10] C. Mousty, G. Foti, Ch. Comninellis and V. Reid, Electrochemical Behavior of DSA type Electrodes Prepared by Induction Heating, Electrochimica Acta, 45,451-456, (1999).

    [11] Ch. Comninellis, G. P. Vercesi, Characterization of DSA-Type Oxygen Evolution Electrodes: Choice of a Coating, Journal of Applied Electrochemistry, 21, 335-345, (1991).

    [12] Chimenti, R. J. Louis; Halpern, G. Martin; Pafford, B. John; Optimization of Acid Strength and Total Organic Carbon in Acid Process, United States Patent, 5708270, (1998).

    [13] C. Kuehn, F. Leder, R.Jasinski and K. Gount, The Electrolytic Synthesis of Hydorgen Peroxide in a Dual Membrane Cell, J. Electrochem. Soc., 1117-1119, (1983).

    [14] C. –P. Klages, A. Dietz, T. Höing, R. Thyen, A. Webber , P. Willich, Deposition and Properties of Carbon-Based Amorphous Protective Coatings, Surface and Coatings Technology, 80, 121-128, (1996).

    [15] C.Sella, J. Lecoeur, Y. Sampeur and P. Catania, Corrosion Resistance of Amorphous Hydrogenated SiC and Diamond-Like Coatings Deposited by r.f.-Plasma-Enhanced Chemical Vapour Deposition, Surface and Coatings Technology, 60, 577-583, (1993).

    [16] D.DOBOS, Electrochemical Data, A Handbook for Electrochemists in Industry and Universities, Elsevier scientific publishing company, New York, 1975.

    [17] D. Pletcher and F. C. Waslsh, Industrial Electrochemistry, BLACKIE ACADEMIC & PROFESSIONAL, New York, (1993).

    [18] E. W. Wong, C. P. Ambler, W. J. Baker and J. C. Parks Jr., Produce High Purity VCM Product, Hydrocarbon Processing, 129-132, (1992).

    [19] E. Traversa, Ceramic Sensors for Humidity Detection: the State-of-the-art and Future Developments, Sensors and Actuators B, 23, 135-156, (1995).
    [20] F. A. KEIDEL, Determination of Water by Direct Amperometric Measurement, Analytical Chemistry, Vol. 31, No. 12, 2043-2047, (1959).

    [21] F. I. Mattos-Costa, P. de Lima-Neto, S. A. S. Machado, L. A. Avaca, Characterisation of Surface Modified by Sol-Gel Derived RuxIr1-xO2 Coatings for Oxygen Evolution in Acid Medium, 44, 1515-1523, (1998).

    [22] F. UCHIKAWA and K. SHOMAMOTO, Time Variability of Surface Ionic Conduction on Humidity-Sensitive SiO2 Films, Am. Ceram. Soc. Bull., 64, 1137-41, (1985).

    [23] G. Foti, C. Mousty, V. Reid and Ch. Comninellis, Characterization of DSA Type Electrodes Prepared by Rapid Thermal Decomposition of the Metal Precursor, Electrochimica Acta, 44, 813-818, (1998).

    [24] G. Bontempelli, N. Comisso, R. Toniolo and G. Schiavon, Electroanalytical Sensors for Nonconducting Media Based on Electrodes Supported on Perfluorinated Ion-Exchange Membranes, Electroanalysis, 9, No. 6, (1997).

    [25] Gopel, E., Hesse, J., and Zemel, J. N. Sensors, WCH Weingeim, p2, (1993).

    [26] H.A. Garrera, J. S. W. Carrozza and A. J. Arvia, Electrochemical Study of Fuming Sulfuric Acid-I. Kinetic Parameters of The Anodic and Cathodic Reaction on Platinum Electrodes, Electrochimica Acta, Vol. 13, pp. 771-780, (1968).

    [27] H. B. Beer, Brit. Patent 1147442 (1965).

    [28] J. Huang and P. K. Dasgupta, Amperometric Microsensor for Water, Anal. Chem., 62, 19355-1942, (1990).

    [29] H. Huang and P. K. Dasgupta, Perflurosulfonate Ionomer-Phosphorus Pentoxide Composite Thin Films as Amperometric Sensor for Water, Anal. Chem. 63, 1570-1573, (1991).

    [30] H. Huang and P. K. Dasgupta, Voltammetric Sensor for Determination of Water in Liquids, Anal. Chem., 64, 2406-2412, (1992).

    [31] H. Zhuang, H. Qiao and X. D Liu., A new Measurement Principle of a Fluid Capacitance Sensor for Measuring Water Cut in Oil-Water Mixtures, The Log Analyst, 30-35, September-October 1997.

    [32] J. D. Winefordner, Physics, Chemistry and Technology of Solid State Gas Sensor Devices, John Wiley & Sons, New York, 1 (1993).

    [33] J. F. C. Boodts and S. Trasatti, Effect of Composition on the Electrocatalytic Activity of the Ternary Oxide Ru0.3Ti(0.7-x)SnxO2, J. Electrochem. Soc., Vol. 137, NO. 12, December (1990).

    [34] J. Janata, Principles of Chemical Sensors, Plenum Press, New York, (1989).

    [35] J. L. Andújar, F. J. Pino, M. C. Polo, A. Pinyol, C. Corbella, E. Bertran, Effect of Gas Pressure and R. F. Power on the Growth and Properties of Magnetron Sputter Deposited Amorphous Carbon Thin Films, Diamond and Related Materials, 11, 1005-1009, (2002).

    [36] J. Li, X. Wu, Z. Zhang, S. Wakida, and K. Higashi, Sulfate Ion-selective Field Effect Transistors Prepared by Sol-gel Technique, Sensors and Actuators B, 66, 216-218, (2000).

    [37] J. S. W. Carozza, H. A. Garrera and A. J. Arvia, Electrochemistry of Fuming Sulphuric Acids-II. Current/Voltage Characteristics at a Platinum Rotating Disk Electrode, Electrochimica Acta, Vol. 14, pp. 205-216, (1969).

    [38] J. P. Wittke, Diffusion of Transition Metal Ions into Rutile (TiO2), JES, Vol. 113, No. 2, 193-194, (1996).

    [39] J. S. Mayell, Kinetics of the Chemical and Electrochemical Reduction of Platinm Black Surface Oxides, JES, 385-388, (1966).
    [40] J. Ying, C. Wan, P. He, Sol-gel Processed TiO2-K2O-LiZnVO4 Ceramics Thin Films as Innovative Humidity Sensors, Sensors and Actuators B, 62, 165-170, (2000).

    [41] Kohichi Kameyama, Shigeru Shohji, Satoshi Onoue, Katsunori Nishimura, Kiyochika Yahikozawa, and Yoshio Takasu, Preparation of Ultrafine RuO2-TiO2 Binary Oxide Particles by a Sol-gel Process.

    [42] Kwang-Wook Kim, Eil-Hee Lee, Jung-Sik Kim, Ki-Ha Shin, Boong-Ik Jung, A Study on Performance Improvement of Ir Oxide-Coated Titanium Electrode For Organic Destruction, Electrochimca Acta, 47, 2525-2531, (2002).

    [43] Kwang-Wook Kim, Eil-Hee Lee, Jung-Sik Kim, Ki-Ha Shin, Kwang-Ho Kim, Study on the Electro-Activity and Non-Stochiometry of a Ru-Based Mixed Oxide Electrode, Electrochimica Acta, 46, 915-921, (2001)

    [44] M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Characterization of Polymers for a Capactive-type Humidity Sensor Based on Water Sorption Behavior, Sensors and Actuators B, 49, 179-185, (1998).

    [45] M. G. Fontana, Corrosion Engineering, McGraw-Hill Book Company, New York, (1986).

    [46] M. Gioti, S. Logothetidis, The Effect of Substrate Bias in Amorphous Carbon Film Prepared by Magnetron Sputtering and Monitored by in-situ Spectroscopic Ellipsometry, Diamond and Related Materials, 7, 444-448, (1998).

    [47] M. Matsuguch, T. Juroiwa, T. Miyagishi, S. Suzuki, T. Ogura, Y. Sakai, Stability and Reliability of Capacitive-type Relative Humidity Sensors Using Crosslinked Polyimide Films, Sensors and Actuators B, 52,53-57, (1998).

    [48] Mitsubishi Moisture Meter Model CA-06(Version 5.2) Instruction Manual.

    [49] M. Boyd, Organic Chemistry, Prentice-Hall Internation Editions, pp 331-332, (1992).

    [50] N. C. Cahoon, The Operation and Use of Reference Cells, Electrochemical Technology, Jan.-Feb., (1965).

    [51] O. T. Fasullo Sulfuric Acid Use and Handling, McGRAW-HILL BOOK COMPANAY, New York, (1965).

    [52] P. Papakonstantinou, J. F Zhao, P. Lemoine, E.T. McAdAms, J. A. McLaughlin, The Effect of Si Incorporation on the Electorchemical and Nanomechanical Properties of DLC Thin Films, Diamond and Related Materials, 11, 1074-1080, (2002)

    [53] P. Shuk, M. Greenblatt, Solid Electrolyte Films Humidity Sensor, Solid State Ionics, 229-233, (1998).

    [54] R. L. Every and W. P. Banks, Reference Electrodes in Sulfuric Acid, Electrochemical Technology, 275-276, (1969).

    [55] R. B. Moore and C. R. Martin, Procedure for Preparing Solution-Cast Perfluorosulfonate Ionomer Films and Membranes, Anal. Chem., 58, 2569-2570, (1986).

    [56] R. B. Moore, III, and C. R. Martin, Morphology and Chemical Properties of the Dow Perfluorosulfonate Ionomers, Macromolecules, 22, 3594-3599, (1989).

    [57] Roland Schlesinger, Michael Bruns, and Hans-Joachim Ache, Development of Thin Film Electrodes Based on Sputtered Amorphous Carbon, J. Electrochem. Soc., Vol. 144, No. 1, January 1997.

    [58] Rosângela R. L. Pelegrino, Luís C. Vicetin, Adalgisa R. De Andrade, Rodnei Bertazzoli, Thirty Minutes Laser Calcination Method for the Preparation of DSA Type Oxide Electrodes, Electrochemistry Communications, 4, 139-142, (2002).
    [59] S. Logothetidis, P. Patsalas, M. Gioti, A. Galdikas, L. Pranevicius, Growth Kinetics of Sputtered Amorphous Carbon Thin Film: Composition Studies and Phenomenological Model, Thin Solid Films, 376, 56-66, (2000).

    [60] S. Meyer, Jr., and C. M. Boyd, Determination of Water by Titration with Coulometrically Generated Karl Fisher Reagent, Analytical Chemistry, Vol. 31, No. 2, 215-219, (1959).

    [61] S. Trasatti, Electrocatalysis: Understanding the Success of DSA, Electrochimica Acta, 45, 2377-2385, (2000).

    [62] S. Schuldiner and T. B. Warner, Investigations of the Kinetics of Hydrogen and Oxygen Reations on a Platinum Electrode in Acid Solution Usin Pulse and Decay Technique, JES, 212-218, (1965).

    [63] W. Gopel, J. Hesse, and j. N. Zemel, Sensors, VCH, New York, p2 (1991).

    [64] W. Hu, X. Cao, F. Wang and Y. Zhang, Short Communication: A Novel Cathode for Alkaline Water Electrolysis, International Journal of Hydrogen Energy, Vol. 22, No.6, 621-623, (1997).

    [65] Xiaodong, Li, Bharat Bhashan, Elaluaion of Fracture Toughness of Ultra-Thin Amorphous Caron Coatings Deposited by Different Deposition Techniques, 355-356, 330-336, (1999).

    [66] 田福助電化學理論與應用,高立圖書有限公司,第五章(1997)。

    [67] 林敬二,楊美惠,楊寶旺,廖德章,薛敬和,化學大辭典,高立圖書有限公司,民國82年2月。

    [68] 林葆喜,DSA-形狀安定陽極簡介,工業材料160期,159-161,89年4月。

    [69] 姚萬年,鹼氯工業手冊,台灣鹼業有限公司,第四章(1961)。

    [70] 楊思廉,化學工業概論,五洲出版社第四章及第五章(1990)。

    [71]羅世澤,感測器發展現況,台灣經濟研究月刊,第16卷,第6期,第49頁(1993)。

    [72] 鄭桂森,監控高濃度硫酸中少量水份之電化學式感測器研究,國立成功大學化學工程學系碩士論文,第四章(2001)。

    [73] ChemNet 化工資訊網,http://www.chemnet.com.tw/。

    下載圖示 校內:2004-08-25公開
    校外:2004-08-25公開
    QR CODE