| 研究生: |
林柏仁 Lin, Bo-Ren |
|---|---|
| 論文名稱: |
照光機之溫度場分析 Thermal Simulation of an Illuminating Oven |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 照光機 、機構設計 、溫度差異性 、田口設計法 、溫度場 、流場 |
| 外文關鍵詞: | Illuminating Oven, Mechanism Design, Temperature Difference, Taguchi Methods, Temperature Field, Flow Field |
| 相關次數: | 點閱:125 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將針對照光機進行模擬分析,分析其內部cell的溫度場,目的為降低各流道上cell之間的溫度差,使cell在通過照光機後,其功率在戶外使用時,輸出穩定性佳,其性能衰退的現象不會太嚴重。而在本研究將會定義了溫度差異性(Temperature Difference)作為性能指標,透過此指標來判斷其設計是否可以減少cell之間的溫度差。在對其機構作設計變更時,需要具備流體力學的基礎概念與熱傳遞的理論,並且還需要閱讀相關文獻,以利於可以快速地改善其性能指標。
為了減少時間與成本的浪費,將透過模擬分析軟體Fluent作分析,首先將真實情況的機台建立成3-D模型,並對此模型做網格劃分,再將真實情況之材料參數、邊界條件輸入其求解器中,分析其流動情況與溫度的變化,並根據其模擬情況,作相對應之設計變更,並比較各設計之品質特性的好壞。
為了使模擬具有系統性與高效率的分析,在此將會引進田口設計法,首先需要先選擇出影響重要的因子與變動的水準數,並選擇合適的田口直交表對其系統做模擬分析,最後再選出其達到目標的理想機能,本研究目標為縮小cell之間的溫度差異性,是為望小的機能。再根據田口設計表所模擬出的結果,計算其品質特性,並比較其各因子對其品質特性影響的程度,選出其最佳化之設計,以期望能縮小各流道之間cell溫度差。
Before the producing process of solar cells is completed, an illuminating oven will be applied to illuminate and heat solar cells to decrease the extent of cells’ degradation and make cells’ performance be more stable. Currently, due to the design of illuminating oven, it leads to solar cells can’t be simultaneously heated to the same temperature in an illuminating oven. The purpose of this research is to heated solar cells to the same temperature, so new mechanisms are designed to reduce the temperature difference between cells. First, the temperature is defined difference as a performance index to determine the design is good or not. Second, using ANSYS FLUENT software simulates the original designs of mechanisms. Third, based on the simulation results above, the new mechanisms are designed to improve the performance. The mechanism designs divide into shutters design and adding short lamps. In the design of shutters, the geometry, angle and pitch of shutters are all changed to influence flow field which decreases the temperature difference between cells. In the design of adding short lamps, using Taguchi methods assists the design of short lamps. Through adjusting short lamps’ power and positions, the lowest temperature of cells is increased to the same temperature as other cells. Through the new mechanism designs, the max temperature difference decreases from 110oC to 41.25oC.
[1] Fischer, H., and W. Pschunder. "Investigation of photon and thermal induced changes in silicon solar cells." Photovoltaic Specialists Conference, 10 th, Palo Alto, Calif. 1974.
[2] Schmidt, Jan, Armin G. Aberle, and Rudolf Hezel. "Investigation of carrier lifetime instabilities in Cz-grown silicon." Conference Record of the Twenty-Sixth IEEE, 1997.
[3] Sorrell, F. Yates, et al. "Temperature uniformity in RTP furnaces." IEEE Transactions on Electron Devices 39.1, 1992.
[4] Jan, Yaw-Kuen, and Ching-An Lin. "Lamp configuration design for rapid thermal processing systems." IEEE transactions on Semiconductor Manufacturing 11.1, 1998.
[5] Clugston, Donald A., and Paul A. Basore. "PC1D version 5: 32-bit solar cell modeling on personal computers." Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE, 1997.
[6] Lu, Bai, Liang Zongcun, and Shen Hui. "Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells." International Journal of Photoenergy, 2014.
[7] Delannoy, Y., F. Barvinschi, and T. Duffar. "3D dynamic mesh numerical model for multi-crystalline silicon furnaces." Journal of Crystal Growth 303.1, 170-174, 2007.
[8] Webb, Ralph L., and Paul Trauger. "How structure in the louvered fin heat exchanger geometry." Experimental Thermal and Fluid Science 4.2, 205-217, 1991.
[9] Hsieh, Ching-Tsun, and Jiin-Yuh Jang. "3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle." Applied Thermal Engineering 26.14, 1629-1639, 2006.
[10] 鄭力銘,ANSYS Fluent 15.0流體計算從入門到精通,電子工業出版社,2015。
[11] 陳富子,呂仲欽,陳南宏,王添益,熱傳遞學,曉園出版社,1989。
[12] 林廣台,李世榮,熱傳遞,新科技書局,1989。
[13] Holman, J.P. HEAT TRANSFER, THE RENASCENCE BOOK COMPANY LTD., 1981.
[14] Ho, W . H., J. T. Tsai, G. M. Hsu, and J. H. Chou, “Process parameters optimization: a design study for TiO2 thin film of vacuum sputtering process,“ IEEE Trans. on Automation Science and Engineering, Vol.7, pp. 143-146, 2010.
[15] ANSYS, ANSYS FLUENT User’s Guide, ANSYS, Inc., 2013.
[16] Lee, Huei-Huang. Finite Element Simulations with ANSYS Workbench 15, Chuan Hwa Book Co., LTD., 2014.
[17] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2011。
[18] 林明獻,太陽能電池技術入門,全華圖書股份有限公司,2007。
[19] 翁敏航,楊茹媛,管鴻,晁成虎,太陽能電池,東華書局,2010。
[20] 李威昇,觸媒轉化器之陶瓷蜂巢結構體設計與成形分析,國立成功大學工程科學系碩士論文,2015。
[21] 陳禮,吳勇華,流體力學與熱工基礎,清華大學出版社,2002。
校內:2021-09-01公開