| 研究生: |
沈芳秀 Shen, Fang-Hsiu |
|---|---|
| 論文名稱: |
評估幾丁聚醣的抗癌潛力與相關機轉探討 Elucidate the possible roles of chitosan in anti-tumorigenesis and its related pathways |
| 指導教授: |
王應然
Wang, Ying-Jan 余俊強 Yu, Chun-Keung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 細胞週期 、幾丁聚醣 、幾丁寡醣 、抗腫瘤能力 |
| 外文關鍵詞: | cell cycle, anti-tumorigenicity, chitosan oligomer, chitosan |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣(Chitosan)為甲殼類動物外骨骼中的主要成份,可由幾丁質(chitin)經鹼水解而來,近年來已知其具有降低體內膽固醇的作用,可以有效預防高血脂引起的冠心病、脂肪肝;亦有報告指出chitosan可抑制惡性細胞的轉移,使腫瘤細胞走向apoptosis,以及增加實驗老鼠對抗細菌感染的能力。本研究的目的是評估chitosan對於抗腫瘤發生的能力及其相關機制的探討。先以LMWC(Low molecular weight chitosan)與HMWC(High molecular weight chitosan)同時進行in vivo與in vitro實驗,評估幾丁聚醣(LMWC、HMWC)對腸胃道細胞的影響,結果發現LMWC與HMWC對預防與治療腸胃道癌症的效果不佳。因此我們使用另一種可溶於水的幾丁寡醣(water soluble chitosan oligomer)進行多種癌細胞株的篩選,結果發現water soluble chitosan對人類大腸癌細胞(colon 205、HT-29),膀胱癌細胞(T24),血癌細胞(Jurkat)無明顯抑制細胞生長效果,而對血癌細胞(U937、HL-60)有微量抑制細胞生長的效果,只有胃癌細胞(AGS)的細胞生長可被有效的抑制約51%。因此進一步的分析AGS細胞經water soluble chitosan處理後細胞週期的變化,發現細胞在S phase的百分比與control組相比有減少的趨勢;因此我們利用BrdU cell cycle analysis assay分析細胞DNA合成的情形,結果發現AGS細胞經加藥處理後在S phase的DNA合成被抑制。接下來我們分析AGS細胞調控細胞週期相關蛋白的表現,結果發現Cyclin D1、Cyclin D3、p21/Cip與p27/Kip蛋白表現增加,而PCNA、RBBP蛋白的表現減少,推測water soluble chitosan對AGS細胞的生長抑制功能是經由調控這些蛋白而得。本研究也分析了water soluble chitosan對AGS細胞MMP蛋白活性的影響,結果發現water soluble chitosan可有效抑制MMP-2與MMP-9蛋白的活性,抑制效果並隨著劑量而增加。本研究結論為幾丁聚醣在作為癌症治療或預防藥物的使用仍須進一步的被研究與探討。
Chitosan derived from chitin by deacetylation in the presence of alkali present mainly in the exoskeleton of crustaceans. It has been reported that chitosan has various biological functions such as improving the symptom of fatty liver and hyperlipidaemia, enhancing the protecting effect of mice against bacteria infection, and avoiding metastasis of malignant cell. The present study was designed to investigate the anti-tumorigenic effects and related mechanisms of chitosan. LMWC (Low molecular weight chitosan) and HMWC (High molecular weight chitosan) were used to evaluate their anti-tumorigenic effects on gastro-intestinal cells, both in vivo and in vitro. We found that LMWC/HMWC possessed only limited G-I cancer cells inhibition effects both in cell culture and animal study. Thus, water soluble chitosan (WSC) was applied, instead of LMWC/HMWC, to test their anti-tumoeigenesis potency. Through a screening test of several cancer cell lines, the results showed that a significant inhibition effects was observed in AGS cells. Therefore, we further investigated the influence of cell cycle regulation of WSC on AGS cells. Flow cytometry analysis of cell cycle distribution indicated that the percentage of S phase reduced dramatically in cells treated with WSC. In addition, BrdU incorporation assay revealed a decreased DNA synthesis rate in treated AGS cells. Cell cycle-related genes expressions were analyzed and the results indicated that Cyclin D1, Cyclin D3, p21/Cip and p27/Kip were up-regulated, while the PCNA, BRBP and were down-regulated. Moreover, we also found that the activity of one of the metastasis-regulating proteins (MMP-2, MMP-9) could be inhibited in AGS cells treated with WSC. Base on the present findings, we concluded that WSC possess mild growth inhibition potency on AGS cancer cells. More studies are needed to further confirm the role of chitosan in cancer therapy or cancer chemoprevention.
1.Jeuniaux C. ["Free" chitin and "masked" chitin in invertebrate skeletal structures]. Archives Internationales de Physiologie et de Biochimie. 72(2):329-30, 1964.
2.Kafetzopoulos D. Martinou A. Bouriotis V. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proceedings of the National Academy of Sciences of the United States of America. 90(7):2564-8, 1993.
3.Pae HO. Seo WG. Kim NY. Oh GS. Kim GE. Kim YH. Kwak HJ. Yun YG. Jun CD. Chung HT. Induction of granulocytic differentiation in acute promyelocytic leukemia cells (HL-60) by water-soluble chitosan oligomer. Leukemia Research. 25(4):339-46, 2001.
4.Onishi H. Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials. 20(2):175-82, 1999.
5.Singla AK. Chawla M. Chitosan: some pharmaceutical and biological aspects--an update. Journal of Pharmacy & Pharmacology. 53(8):1047-67, 2001.
6.Tozaki H. Komoike J. Tada C. Maruyama T. Terabe A. Suzuki T. Yamamoto A. Muranishi S. Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. Journal of Pharmaceutical Sciences. 86(9):1016-21, 1997.
7.Tokoro A. Kobayashi M. Tatewaki N. Suzuki K. Okawa Y. Mikami T. Suzuki S. Suzuki M. Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiology & Immunology. 33(4):357-67, 1989.
8.Tsukada K. Matsumoto T. Aizawa K. Tokoro A. Naruse R. Suzuki S. Suzuki M. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Japanese Journal of Cancer Research. 81(3):259-65, 1990.
9.Kobayashi M. Watanabe T. Suzuki S. Suzuki M. Effect of N-acetylchitohexaose against Candida albicans infection of tumor-bearing mice. Microbiology & Immunology. 34(5):413-26, 1990.
10.Tokoro A. Tatewaki N. Suzuki K. Mikami T. Suzuki S. Suzuki M. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chemical & Pharmaceutical Bulletin. 36(2):784-90, 1988.
11.Lim BO. Yamada K. Nonaka M. Kuramoto Y. Hung P. Sugano M. Dietary fibers modulate indices of intestinal immune function in rats. Journal of Nutrition. 127(5):663-7, 1997.
12.Han LK. Kimura Y. Okuda H. Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. International Journal of Obesity & Related Metabolic Disorders: Journal of the International Association for the Study of Obesity. 23(2):174-9, 1999.
13.Kim SK. Park PJ. Yang HP. Han SS. Subacute toxicity of chitosan oligosaccharide in Sprague-Dawley rats. Arzneimittel-Forschung. 51(9):769-74, 2001.
14.Kimura Y. Okuda H. Prevention by chitosan of myelotoxicity, gastrointestinal toxicity and immunocompetent organic toxicity induced by 5-fluorouracil without loss of antitumor activity in mice. Japanese Journal of Cancer Research. 90(7):765-74, 1999.
15.Torzsas TL. Kendall CW. Sugano M. Iwamoto Y. Rao AV. The influence of high and low molecular weight chitosan on colonic cell proliferation and aberrant crypt foci development in CF1 mice. Food & Chemical Toxicology. 34(1):73-7, 1996.
16.No HK. Park NY. Lee SH. Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 74(1-2):65-72, 2002 Mar.
17.Hasegawa M. Yagi K. Iwakawa S. Hirai M. Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Japanese Journal of Cancer Research. 92(4):459-66, 2001.
18.Xue C. Yu G. Hirata T. Terao J. Lin H. Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents. Bioscience, Biotechnology & Biochemistry. 62(2):206-9, 1998.
19.Xie W. Xu P. Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorganic & Medicinal Chemistry Letters. 11(13):1699-701, 2001.
20.Klaunig JE. Xu Y. Isenberg JS. Bachowski S. Kolaja KL. Jiang J. Stevenson DE. Walborg EF Jr. The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives. 106 Suppl 1:289-95, 1998.
21.LaMont JT. O'Gorman TA. Experimental colon cancer. Gastroenterology. 75(6):1157-69, 1978.
22.Boone CW. Kelloff GJ. Malone WE. Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials: a review. Cancer Research. 50(1):2-9, 1990.
23.Tanaka T. Kohno H. Yoshitani S. Takashima S. Okumura A. Murakami A. Hosokawa M. Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Research. 61(6):2424-8, 2001 Mar.
24.Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Annals of Clinical & Laboratory Science. 30(1):3-21, 2000.
25.Ohishi T. Kishimoto Y. Miura N. Shiota G. Kohri T. Hara Y. Hasegawa J. Isemura M. Synergistic effects of (-)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane. Cancer Letters. 177(1):49-56, 2002.
26.Fiala ES. Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer. 40(5 Suppl):2436-45, 1977.
27.Hong MY. Chapkin RS. Wild CP. Morris JS. Wang N. Carroll RJ. Turner ND. Lupton JR. Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane. Cell Growth & Differentiation. 10(11):749-58, 1999.
28.Singh P. Velasco M. Given R. Wargovich M. Varro A. Wang TC. Mice overexpressing progastrin are predisposed for developing aberrant colonic crypt foci in response to AOM. American Journal of Physiology - Gastrointestinal & Liver Physiology. 278(3):G390-9, 2000.
29.Pan Q. Hamilton SR. Hyland J. Boitnott JK. Effects of carcinogen dosage on experimental colonic carcinogenesis by azoxymethane: an ultrastructural study of grossly normal colonic mucosa. Journal of the National Cancer Institute. 74(3):689-98, 1985.
30.Bird RP. McLellan EA. Bruce WR. Aberrant crypts, putative precancerous lesions, in the study of the role of diet in the aetiology of colon cancer. Cancer Surveys. 8(1):189-200, 1989.
31.McLellan EA. Bird RP. Aberrant crypts: potential preneoplastic lesions in the murine colon. Cancer Research. 48(21):6187-92, 1988.
32.Sielecki TM. Boylan JF. Benfield PA. Trainor GL. Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. Journal of Medicinal Chemistry. 43(1):1-18, 2000.
33.Harper JW. Adams PD. Cyclin-dependent kinases. Chemical Reviews. 101(8):2511-26, 2001.
34.Jones SM. Kazlauskas A. Growth factor-dependent signaling and cell cycle progression. Chemical Reviews. 101(8):2413-23, 2001.
35.Lee MH. Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cellular & Molecular Life Sciences. 58(12-13):1907-22, 2001.
36.Noda H. Maehara Y. Irie K. Kakeji Y. Yonemura T. Sugimachi K. Increased proliferative activity caused by loss of p21(WAF1/CIP1) expression and its clinical significance in patients with early-stage gastric carcinoma. Cancer. 94(7):2107-12, 2002.
37.Tsurimoto T. PCNA biding proteins. Frontiers in Bioscience, 4, d849-858, December 1, 1999. (http://www.bioscience.org/1999/v4/d/tsurimot/fulltext.htm).
38.Miyachi K. Fritzler MJ. Tan EM. Autoantibody to a nuclear antigen in proliferating cells. Journal of Immunology. 121(6):2228-34, 1978.
39.Paunesku T. Mittal S. Protic M. Oryhon J. Korolev SV. Joachimiak A. Woloschak GE. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. International Journal of Radiation Biology. 77(10):1007-21, 2001.
40.Warbrick E. The puzzle of PCNA's many partners. Bioessays. 22(11):997-1006, 2000.
41.Yoshida BA. Sokoloff MM. Welch DR. Rinker-Schaeffer CW. Metastasis-suppressor genes: a review and perspective on an emerging field. Journal of the National Cancer Institute. 92(21):1717-30, 2000.
42.Cancer invasion and metastasis: USB Pathology Departme, 1999. ( http://www.path.sunysb.edu/courses/im/).
43.Basbaum CB. Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Current Opinion in Cell Biology. 8(5):731-8, 1996.
44.Bloomston M. Zervos EE. Rosemurgy AS 2nd. Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Annals of Surgical Oncology. 9(7):668-74, 2002.
45.Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Current Opinion in Cell Biology. 7(5):728-35, 1995.
46.Esparza J. Vilardell C. Calvo J. Juan M. Vives J. Urbano-Marquez A. Yague J. Cid MC. Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood. 94(8):2754-66, 1999.
47.Lipkin M. Uehara K. Winawer S. Sanchez A. Bauer C. Phillips R. Lynch HT. Blattner WA. Fraumeni JF Jr. Seventh-Day Adventist vegetarians have a quiescent proliferative activity in colonic mucosa. Cancer Letters. 26(2):139-44, 1985.
48.Lipkin M. Newmark H. Effect of added dietary calcium on colonic epithelial-cell proliferation in subjects at high risk for familial colonic cancer. New England Journal of Medicine. 313(22):1381-4, 1985.
49.Sherr CJ. Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development. 9(10):1149-63, 1995.
50.Cheng M. Olivier P. Diehl JA. Fero M. Roussel MF. Roberts JM. Sherr CJ. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO Journal. 18(6):1571-83, 1999.
51.Alt JR. Gladden AB. Diehl JA. p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. Journal of Biological Chemistry. 277(10):8517-23, 2002.
52.Yu J. Miehlke S. Ebert MP. Szokodi D. Wehvnignh B. Malfertheiner P. Ehninger G. Bayerdoerffer E. Expression of cyclin genes in human gastric cancer and in first degree relatives. Chinese Medical Journal. 115(5):710-5, 2002.
53.Yu J. Miehlke S. Ebert MP. Szokodi D. Wehvnignh B. Malfertheiner P. Ehninger G. Bayerdoerffer E. Expression of cyclin genes in human gastric cancer and in first degree relatives. Chinese Medical Journal. 115(5):710-5, 2002.
54.Aoyagi K. Koufuji K. Yano S. Murakami N. Terasaki Y. Yamasaki Y. Takeda J. Tanaka M. Shirouzu K. Immunohistochemical study on the expression of cyclin D1 and E in gastric cancer. Kurume Medical Journal. 47(3):199-203, 2000.
55.Takano Y. Kato Y. Masuda M. Ohshima Y. Okayasu I. Cyclin D2, but not cyclin D1, overexpression closely correlates with gastric cancer progression and prognosis. Journal of Pathology. 189(2):194-200, 1999.
56.Doglioni C. Chiarelli C. Macri E. Dei Tos AP. Meggiolaro E. Dalla Palma P. Barbareschi M. Cyclin D3 expression in normal, reactive and neoplastic tissues. Journal of Pathology. 185(2):159-66, 1998.
57.Bartkova J. Lukas J. Strauss M. Bartek J. Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene. 17(8):1027-37, 1998.
58.Slater T. F. and Block G. (1991) Antioxidant vitamins and ß-carotent in disease prevention. American Journal of Clinical Nutrition 53, 389s-396s.
59.Klurfeld DM. Dietary fiber-mediated mechanisms in carcinogenesis. Cancer Research. 52(7 Suppl):2055s-2059s, 1992.
60.Reddy BS. Sharma C. Simi B. Engle A. Laakso K. Puska P. Korpela R. Metabolic epidemiology of colon cancer: effect of dietary fiber on fecal mutagens and bile acids in healthy subjects. Cancer Research. 47(2):644-8, 1987.
61.Gallaher DD. Locket PL. Gallaher CM. Bile acid metabolism in rats fed two levels of corn oil and brans of oat, rye and barley and sugar beet fiber. Journal of Nutrition. 122(3):473-81, 1992.
62.Weisburger JH. Reddy BS. Rose DP. Cohen LA. Kendall ME. Wynder EL. Protective mechanisms of dietary fibers in nutritional carcinogenesis. Basic Life Sciences. 61:45-63, 1993.